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Abstract 

Recently, machine learning methods have been used for computer-aided diagnostics  

of neuropsychiatric disorders. The application of these methods on high-dimensional 

neuroimaging data may help in solving the problem of subjective diagnostics  

in psychiatric diseases, such as schizophrenia, where interviewing patients and their 

relatives is still considered as gold standard.  

This paper presents a classification framework, which was designed to distinguish 

between two classes of subjects based on their imaging data from magnetic resonance. 

Features are extracted using two different automated brain morphometry methods: 

voxel-based (VBM) and deformation-based morphometry (DBM), and their 

representation in the wavelet domain. The number of features was reduced  

by thresholding in the wavelet domain and further by selecting only those features 

carrying the most discriminant information assessed with Fisher’s discriminant ratio. 

The framework involves a support vector machine classifier (SVM) with linear kernel 

and an evaluation strategy based on leave-one-out cross-validation.  

There are two basic parameters in the framework: (i) wavelet decomposition level and 

(ii) number of selected features. Their different setup and various types of features 

were tested on a dataset resulting from a clinical study focused on first-episode 

schizophrenia (FES) patients. Multiple experiments resulted in quantified quality  

of classification between 52 FES patients and 52 healthy controls. The highest 

classification accuracy – 73.08 % – was achieved with 1000 selected features extracted 

by VBM and four decomposition levels. In the case of DBM features, the classificator 

achieved the highest accuracy of 72.12 % for five decomposition levels and 5000 

discriminating features.   

The framework was deployed in the form of Matlab scripts and functions. Although 

the achieved classification quality is comparable with some other published results, 

there is still a space for improvements, as the accuracy in the real clinical practice  

is expected to be higher than 95 %.  

 

1 Introduction 

In recent years, medical imaging methods have been intensively developed to provide 

comprehensive and extensive data for further processing. This progress in the field of neuroscience 

allows, on the one hand, a thorough study of the brain structures, but also the finding of connections 

between the brain structure and its function. Hence, analysis of brain imaging data in psychiatric 

research has begun to be used with great potential, having discovered a link between neuropsychiatric 

disorders and structural change in the brain. 

In the field of computational neuroanatomy, structural magnetic resonance imaging data (MRI) 

are often analysed using automatic brain morphometry, especially Voxel-based morphometry (VBM) 

and Deformation-based Morphometry (DBM). Unlike older morphometric methods (e.g. volumetry), it 

is not necessary to define arbitrary anatomical boundaries for these methods but spatial normalization 

of the image into the stereotactic must be performed [2]. 



VBM finds statistical differences in tissue volume at the level of individual voxels. The result  

of the analysis is the so-called Statistical Parametric Map (SPM). It represents voxels in which  

the concentration of grey or white matter is statistically significantly different among the studied groups 

of subjects [5]. DBM, similar to VBM, is another technique of computational neuroanatomy widely 

used to support diagnostics from image data. Unlike the aforementioned VBM, this method detects 

structural differences (changes in shape, position, size) of brain regions relative to a given template [14] 

without need to segment individual brain tissues. 

Both of these methods are often used for feature extraction and subsequent comparative analysis 

to reveal anatomical or morphological abnormalities in a selected group of patients against healthy 

controls [6] [7] [14]. In order to differentiate those groups, the support vector algorithm (SVM - Support 

Vector Machine) is used very often [3] [4] [14].  

This paper focuses on processing and analysis of magnetic resonance images of patients with  

the first episode of schizophrenia. 

2 Methods 

 The proposed algorithm consists of 3 key steps – see Figure 1. The images are pre-processed  

with DBM and VBM in order to get features with clear biological-clinical interpretation. Thresholding 

in the wavelet domain is performed with the aim of basic dimensionality reduction. The reduced data 

enter into the classification algorithm and subsequently the quality of classification is evaluated 

quantitatively using the leave-one-out cross-validation approach.  

 

2.1. Subjects and data 

The data set contained a total of 104 subjects - 52 schizophrenic patients and 52 healthy subjects 

(NC - Normal Control). It consists of 104 T1-weighted MRI images of the entire subject’s head. Images 

with a resolution of 160 × 512 × 512 voxels were acquired by a 1.5 T magnetic resonance device. 

Patients, exclusively men with an average age of 24 years, were admitted to the Psychiatric Clinic  

of Masaryk University in Brno – upon admittance, they manifested features of this disease longer than 

one month for the first time. The diagnosis was based on an interview with senior psychiatrist. After 

follow-up examinations, some subjects were excluded from the study due to neurological diseases, drug 

addiction, and others [14]. 52 healthy male volunteers, were paired with patients based on their age  

and their writing hand preference. 

The T1-weighted data was pre-processed using DBM or VBM. In addition to the images  

with morphometric features, the feature images were decomposed by discrete wavelet transformation  

at different levels. Morphometric imaging features in the original domain and in the wavelet domain 

were included in series of experiments aimed at classification performance assessment. 

 

2.2 Sparsity and Wavelet Transform 

In order to extract features, 3-D discrete wavelet transformation was used. It transforms the image 

data into a space where information contained therein is sparsely1 represented. In order for this 

transformation to take place, two parameters have to be determined: maternal wavelet and image 

decomposition level. The levels of decomposition 3,4 and 5 and the sym5 wavelet were selected  

in consultation with an expert and based on literature [9]. 

After wavelet decomposition of the image data, each subject is described by means of a long 

wavelet coefficient vector The coefficients with the highest values, the greatest amount of the image 

energy is contained [15]. For this reason, values near to zero, i.e. values lower than the predetermined 

threshold were removed from the feature vector [1], and the dimensionality of the data was reduced. 

The threshold value was set to be 0.05 based on preliminary experiments. 

                                                      

1 Discrete signal is sparse if most of his patterns or samples equal zero. If it is not sparse, it can be transformed into 

another domain and get the sparse characteristics, which might help with its analysis. [12]. 



In the DBM dataset after wavelet transformation to 3 levels of decomposition, only 90,000 of the 

original 8.5 million coefficients were left in this way, with 99% energy remaining. In the VBM after 

wavelet transformation, there were about 3 million features reduced to about 23 thousand, and 99%  

of the energy remaining. If the algorithm does not work with data that used the wavelet transformation 

to extract the features, they are selected in a different way from this data. Primary data range reduction 

is then performed using the binary brain mask instead of the above-mentioned thresholding. This step  

is followed by a metrics calculation in all data files to select discriminating features. 

 

2.3 Feature Selection 

The still too large dimensionality of the features space was reduced using Fisher's Discrimination 

Ratio (FDR), which seemed to be the most appropriate tool for selecting those features that divided  

the subjects into the desired NC and FES groups with the highest precision [17] [19]. 

 

𝐹𝐷𝑅 =  
(𝜇1−𝜇2)2

𝜎1
2+𝜎2

2  ,     (2.1) 

 

Where μ1 and μ2 are the mean feature values between first and second class subjects and σ1
2  

and σ2
2 denote the variance of the feature values within the classes. After a particular criterion value  

is calculated for each feature, it is sorted down by size, and the first p features are then selected and 

entered into the algorithm. An important question is how many of these p best-discriminating features 

should be chosen. The cycled algorithm includes one more cycle that evaluates the classifier's success 

rate for selected p values. This number of features is set to {100, 500, 1000, 5000, 10,000} within  

the experiment. By using these number of features, the classifier is taught and results in a comparison 

of the overall classification accuracy for the given number of features. 

 

2.4 Classification 

At this stage, each subject is described by means of a long vector p of selected features  

with a high-discrimination score (FDR) and an identifier that determines to which group the subject  

is ranked. This data then serves as an input to the learning phase of the SVM classifier with a linear 

nucleus. The output of the classification algorithm is then an identifier that expresses the class to which 

the subject belongs according to the classifier. After teaching the classifier, its classification capability 

is verified on a test subject. Classification quality is determined here by sensitivity, specificity  

and overall accuracy:  

𝑆𝐸𝑁𝑆 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 ,      (2.2)

 

 

SPEC =
TN

FP+TN
 ,       (2.3) 

 

ACC =
TP+TN

TP+FN+TN+FP
 ,      (2.4)

 
 

where TP expresses true positive results, TN denotes true negatives, FP indicates false positives, 

and FN indicates false negatives. These variables are calculated from the results obtained during  

leave-one-out cross-validation [10]. 

 



 

 

Figure 1 - a schematic diagram of the proposed classification algorithm. Classifier quality evaluation 

is done through LOOCV (leave-one-out cross-validation). TP indicates true positive classification 

results, FP indicates false positive classification results, TN indicates true negative classification 

results and FN indicates false negative classification results. 

 

3 Experiments and Results 

For the experiments in this paper, several optional parameters were selected in the classification 

algorithm: i) pre-processing of magnetic resonance imaging (DBM, VBM); ii) decomposition level  

by wavelet transformation (3, 4, 5); iii) selection of the best number of features (500, 1000, 5000, 

10000). In the experiment, all of their combinations were tested, i.e. 2 × 3 × 5 = 30 experiments with 

data that were processed by wavelet transformation and 2 × 5 = 10 with data that were not processed  

by the wavelet transformation. Altogether, 40 experiments were carried out. All of these experiments 

worked with different combinations of the above-mentioned parameters. On their basis, various features 

during the algorithm were selected which then entered its classification section. 

The results of the experiments for different levels of decomposition by wavelet transformation 

and for the two best numbers of discriminating features are shown in Table 1. While VBM achieves  

the most accurate results for 4 decomposition levels by wavelet transformation when working with 1000 

discriminating features, DBM achieves the highest accuracy for 5 levels of decomposition when 

selecting 5000 discriminating features. 

 

 

 

 

 

 

 

 



Table 1: THE SUCCESS OF CLASSIFYING A DATA FILE DEPENDING ON THE LEVEL OF 

DECOMPOSITION BY WAVELET TRANSFORMATION AND THE NUMBER OF FEATURES. THE VALUES THAT 

GET THE BEST RESULTS ARE HIGHLIGHTED. 

 

preprocess. 
decomposition 

levels 

number of 

features 

sensitivity 

[%] 

specificity 

[%] 

accuracy 

 [%] 

VBM 

0 1000 51,92 63,46 57,69 

0 5000 50,00 59,62 54,81 

3 1000 69,23 71,15 70,19 

3 5000 67,31 75,00 71,15 

4 1000 71,15 75,00 73,08 

4 5000 65,38 69,23 67,31 

5 1000 69,23 73,08 71,15 

5 5000 63,46 71,15 67,31 

DBM 

0 1000 51,92 42,31 47,12 

0 5000 67,31 59,62 63,43 

3 1000 59,62 61,54 60,58 

3 5000 69,23 67,31 68,27 

4 1000 55,77 57,69 56,73 

4 5000 67,31 71,15 69,23 

5 1000 57,69 59,62 58,65 

5 5000 67,31 76,92 72,12 
 

4 Discussion  

In this paper, a classification algorithm for image recognition was designed in the context  

of the upcoming era of computer-aided diagnostics of neuropsychiatric disorders. Four types of data 

entered into this algorithm depending on the pre-processing method: data from voxel-based 

morphometry and their decomposition by wavelet transformation and deformation-based morphometric 

data and their decomposition. 

The experiments mainly dealt with data that were processed by wavelet transformation. This data 

were decomposed to three, four and five levels, based on expert consultation and literature [9]. There 

has been some limitation of the classification algorithm parameters. Another limiting parameter was  

a predetermined sym5 mother wavelet from the symlets family, which was also determined based  

on a study [9] that states their good performance for the decomposition of natural images. 

All data decomposed by wavelet transformation were classified after eliminating coefficients 

 at an absolute value smaller than the pre-selected threshold T = 0.05. This value was determined on the 

basis of several experiments and calculations of the total image energy, which decreased with each 

higher value of the threshold. 

The discriminating power of the coefficients determined by the Fisher Discrimination Ratio was 

calculated independently of the other features. The average values of these coefficients increase slightly 

depending on the decomposition level (Table 2). 



Table 2: AVERAGE VALUES OF THE DISCRIMINATING POWER OF THE WAVELET COEFFICIENTS AT 

DIFFERENT DECOMPOSITION LEVELS. 

 

decomposition 

levels 

preprocessing 

DBM VBM 

3 0,1385 0,0825 

4 0,1438 0,0889 

5 0,1451 0,0956 

 

As the final results suggest (Table 1), the classification algorithm, which recognizes the images 

from which the discriminating features were extracted by wavelet transformation compared to the case 

without transformation, produces better results. In the case of data that describes local volume changes, 

especially in the recognition of images decomposed into 5 levels of decomposition, while in grey matter 

density data, the algorithm achieves the best accuracy at 4 levels of decomposition. The fact that higher 

classification performance is achieved by data processed by wavelet transformation could be caused  

by the fact that a significant amount of information is contained in a smaller number of coefficients 

thanks to wavelet transformation. 

Another factor influencing the resulting classification accuracy is, in addition to the above 

mentioned decomposition level and the data pre-processing method which is no less important, is  

the number of discriminating features with which the algorithm works. The best results, i.e. 73.08% 

accuracy, 71.15% sensitivity, and 75.00% specificity were obtained from the data that describes the grey 

matter density, that were processed by wavelet decomposition at 4 levels and the classifier worked  

with 1000 features. In the case of data describing local volumetric changes, it also achieved the best 

results at 5 levels of decomposition for 5000 features with 72.12% accuracy, 67.31% sensitivity and 

76.92% specificity. 

For a fair comparison of this paper with literature, it is necessary to compare it only in the context 

of works that did not work with the image data of patients who suffer from the chronic form  

of schizophrenia. This is due to the fact that individuals with chronic schizophrenia have more marked 

morphological differences in the brain [11] [13]. 

The results of this work are comparable to scientific papers dealing with the design of algorithms 

for the objective method of diagnosing the first episode of schizophrenia [8] [14] [16] [18].  

However, it is very important to note that the success rate of about 70% is still insufficient to use these 

procedures for diagnostic purposes in clinical practice. 

 

5 Conclussion 

This paper dealt with the application of wavelet transformation to image data, which was further 

used for computer-aided diagnosing the first episode of schizophrenia. Schizophrenia is currently 

diagnosed only through neuropsychological tests and interviews, therefore these procedures could lead 

to a more effective and accurate diagnosis of this neuropsychiatric disorder. In such case, it would be 

possible to refine the medication, or set individual treatment for each patient, thereby increasing 

the number of healed patients. 

Differently pre-processed data entered into the proposed algorithm; their dimensionality was 

subsequently reduced by reducing and selecting the features suitable for subsequent classification  

with the teacher. Success rate of the proposed classifier has been tested too. 

The obtained results can be compared using precision indicators to the results of similarly focused 

works, which also focused on designing an algorithm for recognizing images of schizophrenic  

and healthy controls. Although the results are comparable to those of other authors, the resulting 

accuracy is still too low to make the proposed algorithm serve as an objective method for diagnosing 

this neuropsychiatric disorder. 
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