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Abstract

In this paper, we propose a novel approach to analyze and visualize genetic variation of a
segmented genome of a virus in feature spaces embedded in IRp and/or higher feature spaces
embedded in IRp′ 3 p′ > p. The segmented genome of a virus is considered as a heteroge-
neous sequence-set with different mutation rates. In this approach, the dispersion maps of a
virus are computed in a decentralized manner using an arbitrary set of substrings of specific
length (e.g. 2-grams). The new approach is considered as new decentralized alignment-free
visualization tool. The new decentralized alignment-free visualization tool, shows effective-
ness in capturing and analyzing genetic variation that causes the genetic biodiversity of the
segmented gnome of a virus. The new alignment-free visualization tool is expected to be a
useful tool in biomedical sector, specifically with a network of mobile laboratories.

1 Introduction

Sequence-set analysis is a developing research discipline in the area of sequence-analysis [5, 8, 7].
The sequence-set analysis is focusing on analyzing sets of sequences in data space (Σ∗−ε, where Σ
is an alphabet and ε is the empty string) or feature space (IRp) or distance space (IR+∪{0}) using
different approaches or techniques. There are two types of sequence-sets, those types are: (i)
homogeneous sequence-sets, and (ii) heterogeneous sequence-sets. A homogeneous sequence-set
is defined as a set of sequences, where sequences have the same nucleotide composition and share
common biological features (e.g. common ancestor). A heterogeneous sequence-set is defined
as a set of sequences, where sequences have different nucleotide compositions and different
biological features. In fact, there is no evidence that sequences of a heterogeneous sequence-
set have a common ancestor. In addition, for each type of sequence-sets, different approaches
can be implemented to analyze the extracted information from sequence-sets. Sequence-sets
are embedded in data space, and therefore, to analyze sequence-sets in feature space, feature
extraction techniques are required to map sequence-sets from data space to feature space.

The segmented genomes of a virus are heterogeneous sequence-sets (e.g. flu virus has
eight segments, which can be encoded into 10-11 proteins, and each protein has a different
function [5]). They are changing rapidly with different mutation rates. Therefore, the changes
in segmented genomes of a virus have negative impacts on different life forms (e.g. human
health). Monitoring the changes in segmented genomes of a virus is considered as a complicated
analysis process. In this paper, we aim to propose a decentralized alignment-free visualization
tool that can be effectively used in analyzing and visualizing genetic variation of a virus in
different feature spaces.

The rest of this paper is organized as follows. We shall present: research problem under
consideration in section 2, related research works in Section 3, new decentralized alignment-
free sequence-set visualization tool in Section 4, results and discussion in Section 5, and finally,
conclusions and future work in Section 6.
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2 Research problem under consideration

In this paper, the research problem under consideration is a complicated problem due to the
following facts. Each data point is a data set (set of sequences). Each sequence has different base
compositions. Stochastically, each sequence has different stationary probability distributions.
The variation among data points is complicated to be captured and visualized by ordinary data
analysis techniques. In addition, data points are distributed among several network-nodes. In
fact, we can consider this problem as one of new research problems in the field of Big Data
mining [4, 24].

Recent years, we witnessed new research directions in data science. One of those new
research directions is Big Biological Data Mining (or Massive Biological Data Mining)[17]. De-
veloping new methods, algorithms, approaches, and techniques to use them in analyzing Big
Biological data sets is the most promising and optimistic research developments in Data Science
[5]. Developing the applicability of the existing data analysis methods, approaches, algorithms,
and techniques to use them in analyzing Big data sets is a new challenge in Data Science.

We define Big Data or Massive Data as large or complex data sets that are collected
using different data acquisition procedures with the following properties: (1) size of data sets
is either variable or constant, (2) data types may vary in terms of varieties and variations
[24], (3) velocity of collecting data sets is dynamically increasing/decreasing (in real time t) or
static. In an abstract sense, suppose that we have data sets {d1, d2, ..., dn} of segmented genomes
(i.e. sets of sequences) of a well-known virus. Let di = {S1, S2, S3, ..., Sui} ((i = 1, ..., n) and
(|di| = ui)) be i-th set of sequences, and Sui be ui-th sequence. Suppose that {d1, d2, ..., dn}
are distributed over m nodes (i.e m databases). In addition, suppose that there exists query
node (main node) among the m nodes. We aim to capture, visualize, and compare the genetic
variations of each data set of the segmented genomes of a given virus in feature spaces by using
the following generic decentralized computational concept(DCC): move code of computations to
data instead of moving data to code of computations in order to reduce the volume of transferred
raw data over the network, and implicitly to preserve the privacy and sensitivity of data under
consideration. Moreover, we aim to capture, visualize, and compare the genetic variations of Si1
and Si2 by using DCC, such that Si1 ∈ dj1 and Si1 ∈ dj2 , dj1 and dj2 are located at two different
nodes. Therefore, in this paper, we propose the following new research objective: to design
a new statistical computing algorithm or model (i.e. new alignment-free visualization tool) in
biological data mining that can be implemented in asynchronous and autonomous manner.

The main question that arises in this context is: why we consider the data under con-
sideration as Big Biodata? The answer is simply due to the following: (i) The data points are
datasets, (ii) the accumulating process of the data points (i.e. segmented genome of a virus)
is a continuous process or near-real time process, specifically during spreading, and (iii) the
datasets or the data points under consideration are stored in different distributed databases (or
at different nodes).

After we described the research problem under consideration, in the next section, we shall
present related research works.

3 Related research works

Functionally, Data-visualization tool is a necessary complementary phase to data-analysis tool.
In this section, we present the existing alignment-free sequence-set visualization tools (SSVT)
and the existing alignment-free sequence visualization tools (SVT). Moreover, we consider the ex-
isting alignment-based sequence visualization tools and alignment-based sequence-set visualiza-
tion tools as unrelated research works, therefore, more details about alignment-based sequence-
visualization tools and alignment-based sequence-set visualization tools can be found in [8, 7, 18].
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It should be noted that all the existing SSVT and SVT are designed using the centralized com-
putational concept(CCC). Sequences can be compared using either alignment-based algorithms
(Pairwise Alignment and Multiple Alignment) [12, 20, 11] or alignment-free algorithms (Euclid-
ian Distance, Standardized Euclidean Distance, Mahalanobis Distance, Correlation Coefficient,
Largest Generalized Eigenvalue-based Distance, Entropy Measure, Kolmogorov Complexity, and
Markov Chain models) [5, 22, 26, 25, 6]. Multiple sequence alignment algorithms are very use-
ful algorithms in aligning and analyzing any homogeneous set of sequences[12, 20]. In next
part of this paper, we focus on reviewing the existing statistical information-based visualization
algorithms that can be used in visualizing results of sequence analysis algorithms.

A statistical information-based visualization algorithm is an integrated algorithm to sta-
tistical analysis algorithm (see [2]). The two algorithms can be combined to create two-phase
process: (1) extracting statistical information from sequences (analysis phase) and, (2) visual-
izing the extracted statistical information (visualization phase). The extracted statistical infor-
mation are denoted by the following: probability distribution of nucleotide compositions and its
statistical parameters (e.g. mean, variance, standard deviation), variations and co-variations be-
tween/among sequences, statistical clustering of sequences, statistical classification of sequences,
and analysis of outliers.

From modeling point of view, any sequence is linear in time. Information can be extracted
from any given sequence using a feature extraction algorithm. For example, counting the oc-
currences of n1-grams in a sequence is a well-known statistical language modeling algorithm.
The algorithm has the following computational step. Without loss of generality, suppose that
we have the following sequence: ACGACT. The algorithm simply converts ACGACT to the
following fixed-length feature vector: 2 AC, 1 CG, 1 GA, 1 CT, or (2111)′. The vector repre-
sents the occurrences of the following 2-grams: AC, CG, GA, and CT (i.e. frequency of AC,
CG, GA, CT). If we consider all possible 2-grams, then we have to add 12-zeros to (2111)′. In
this context, the mapping represents a fixed-length vector for a sequence of symbols. It is a
data-vector that results from a sequential discretization process. The relative-frequency of AC,
CG, GA, CT represents the normalized vector of (2111)′. The feature vector can be computed
using two different mechanisms: (1) sliding a fixed-length window on a given sequence from one
end to another end, and computing the feature vector for each instance of window, or by (2)
computing the feature vector for the entire sequence (i.e. window-length = sequence-length).
There are various statistical analysis algorithms that can be implemented to extract various sta-
tistical information from extracted feature vector(s). The next step is to visualize the extracted
statistical information using different statistical graphs (descriptive statistics). In this context,
data points are sequences, which can be generalized to sets of sequences (see [5, 8, 7, 9]). As
we previously mentioned, there are two types of sequence-sets: (i) homogeneous sequence-sets,
and (ii) heterogeneous sequence-sets. We define both types of sequence-sets from two different
angles: (i) mathematically or statistically, and (ii) biologically. It is not always true that math-
ematical definitions are perfectly identical to biological definitions. The differences always exist
between mathematical and biological definitions, and yet mathematical definitions are proved
to be powerful in modeling any biological phenomenon.

One of the well-known bioinformatics tool boxes is the MATLAB toolbox: bioinformatics[18].
There are various built-in functions that can be used by end-users to visualize the statistical
analysis output of any given sequence (i.e. statistical sequence analysis). For example: pie-chart,
bar-chart, and codon-map (see Figure 4). In Figure 4, the outputs are created using mechanism
2 (entire sequence). In Figures (3a), the outputs represent the probability density of all possible
1-grams (upper subplot), and the probability density of all possible 2-grams (lower subplot) in a
given sequence respectively. In addition, the outputs are created using mechanism 2. In Figure
( 3b), the outputs represent the probability density of all possible 1-grams (upper subplot),
and the probability density of {AT,CG} (lower subplot) in a given sequence respectively. In
addition, the outputs are created using mechanism 1 (sliding-window based mechanism). The
cluster analysis of sequences can be visualized using dendogram plot (see Figure 5c). Dendo-
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gram is a built-in visualization tool in MATLAB-bioinformatics toolbox. In this example, the
default distance measure is the euclidean distance. The distance values are computed between
every possible pair of sequences in a set of sequences. Precisely, a distance value represents
the distance between a pair of feature vectors, where each feature vector represents a sequence
(mechanism 1). Finally, it should be noted that there are non-statistical based visualization
tools that can be used to analyze and visualize the extracted information from sequences. For
example, the dot-plot of a pair of sequences (identicalness between two sequences, see Figure
3c).

To be consistent with the objectives of this paper, the non-statistical based visualiza-
tion tools are excluded from this section. Sequence-set analysis is a developing research direc-
tion. The data points under consideration are sets of sequences. Sequence-set analysis has two
sub-directions: (1) Alignment-free Sequence-set Analysis, and (2) Alignment-based Sequence-
set Analysis. Analyzing sequence-sets in feature spaces requires feature extraction techniques
to extract observed feature vectors from sequence-sets (e.g. n1-grams model). M. Daoud [5]
proposed a new variance-covariance structure-based statistical pattern recognition system for
solving the sequence-set proximity problem under the homology-free assumption. The system
is designed upon using the difference between two variance-covariance matrices, where each
variance-covariance matrix represents a sequence-set. The variance-covariance matrix is a well
known matrix in multivariate analysis [13, 1]. The key point of the proposed system is [5]: the
system has the capability in estimating the distance between any two sequence-sets (i.e. two
sets of sequences), such that there is no prior knowledge about homology-assumption. In terms
of time complexity and complexity of data points under consideration [5], the proposed system
shows robustness in performing the following processes on sets of sequences without alignment:
(i) classification, (ii) clustering, (iii) variability detection, and (iv) sequence-set based searching.

The Outputs from visualization tools included in the analysis phase of the proposed system
are illustrated in Figures (5a) and (5b). The outputs are the integrated phase of analyzing
patterns in sets of sequences using variance-covariance matrices to perform classification and
clustering algorithms. In Figure (5b), the output represents scatter diagram of sequence-sets
embedded in a high dimensional feature space (classification), whereas, In Figure (5a), the
output represents a dendogram of sequence-sets embedded in a high dimensional feature space
(clustering). In addition, both tools offer a visual assessment for the extracted information from
sequence-sets embedded in a high dimensional feature space. Moreover, the extracted knowledge
is expected to be undetectable in lower dimensional feature spaces/data space, or are detectable
differently from lower dimensional feature spaces/data space. It should be noted that each
data point represents a set of sequences with the following condition: no prior knowledge about
homology-assumption.

In this section, we presented the related research work that focuses on analyzing and
visualizing sequences and sequence-sets. In the next section, we shall present the proposed
algorithm to analyze sets of heterogeneous sequences (e.g. segmented gnome of flu virus) in
feature space using decentralized computational concept (or model).

4 New decentralized alignment-free sequence-set visualization
tool

In this section, we present a new decentralized statistical computing algorithm to analyze and
visualize sets of heterogeneous sequences (e.g. segmented gnome of flu virus) in feature spaces.
Given data sets {d1, d2, ..., dn} of segmented genomes (i.e. sets of heterogeneous sequences)
of a well-known virus. Let di = {S1, S2, S3, ..., Sui} (i = 1, ..., n) (|di| = ui). Suppose that

{d1, d2, ..., dn} are distributed over m nodes (i.e m databases), and let Ω(j) = {ω(j)
1 , ω

(j)
2 , ..., ω

(j)
p }

be sets of strings, j = 1, 2, ..., l. To illustrate the abstract concept via an example, suppose that
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we aim to send one or more software agent(s) to mine distributed databases over a network.
The network consists of five nodes and five links (see Figure 2). In this example, the main
node is (v1). Assume that dataset d3 is hosted by node two (v2), datasets d1 and d2 are hosted
by node three (v3), and datasets d4 is hosted by node four (v4). Suppose that we dispatch a
software agent with the following task T : the main task is to mine all the distributed datasets
independently in a decentralized manner and send the outputs to the main node.

Definition 1 [10] A mobile agent is a software entity that has the capability to roam the network
from one node to another to accomplish a given task T on behalf of a user. At the time of its
dispatching, a mobile agent has a specified route to a accomplish a given task T . During agent’s
mission, the route is either static or dynamic.

To design an approach for analyzing sets of heterogeneous sequences in a feature space
using decentralized computational concept, we have to define a feature extraction phase. In
other words, we have to map each sequence in a given sequence-set into a feature space using

a well-defined feature vector X. Let X(j) = (X
(j)
1 , X

(j)
2 , ..., X

(j)
p )′ be a (p × 1) real-valued

feature vector, where each feature variable X
(j)
r (r = 1, 2, ..., p) represents the occurrences of

the string ω
(j)
r ∈ Ω(j) of length n1 (n1-gram) in a sequence. In order to associate feature

variables X
(j)
1 , X

(j)
2 , ..., X

(j)
p with biological features, the feature selection phase is an essential

pre-processing phase that can be used in reducing the dimensionality of any feature space without
loosing or damaging the essential information required for the decision making phase. Now, the
question that arises in this context can be formed as follows: Which feature vector is useful
in analyzing sequence-based datasets in order to detect dissimilarities that are undetectable in
other feature spaces?

The previous research question is a very complicated question. In this paper, we aim
to map the heterogeneous sequence-based datasets into feature space in order to increase the
capability of discrimination analysis techniques in capturing differences and/or hidden differences
that are undetectable in feature space or data space. The advantage behind capturing various
types of differences is to be able to associate the feature variables with the biological features,
which will give virologists and epidemiologist the opportunity to understand segmented genomes
of viruses from two different angles: (1) biological features (e.g. type, subtype, host), and (2)
evolution (e.g. biodiversity).

Let (m1) be an alphabet-size, and let (n1) be a substring-length. Consequently, the num-
ber of all possible feature variables is n1

m1 . To select p mathematical features from a set of
n1

m1 feature variables, therefore a feature selection procedure is required. In the literature of
sequence analysis field, there exists a few number of feature selection procedures, for exam-
ple, J. T. L. Wang et al. [23] proposed a feature selection procedure to select relevant feature
variables using the maximum likelihood approach, in other words, the probability of observ-
ing the selected feature variables in a given target class of sequences must be greater than the
probability of observing the selected feature variables in a given non-target class of sequences
in order to stochastically maximize discrimination between two classes of sequences. The pro-
posed procedure is a stochastic assumptions-based procedure, which it can be implemented on
homogeneous sequence-sets. In this paper, homogeneous sequence-sets are defined as classes of
sequences, such that (1) sequences in each class have common biological features, and (2) the
nucleotide compositions of sequences in each class have common stochastic characteristics.

In order to clarify the main reason behind inapplicability of the previous feature selection
procedure (or feature selection phase) in analyzing a segmented gnome of a virus, the probabilis-
tic analysis of occurrences of substrings of length n1 (i.e. n1-grams) in a segmented gnome of
influenza virus is illustrated in Figure 3a. Figure 3a illustrates the relative frequency of all pos-
sible 1-grams, and 2-grams, in each sequence of a segmented genome of influenza virus. In case
of 2-grams, we have 16 possible 2-grams, therefore, we have 16 lines, where each line represents
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the relative frequency of one of the possible substrings of length 2.

In case of 1-grams, we have 4 possible 1-grams, therefore, in Figure (3a)(upper subfigure),
we have 4 lines, where each line represents the relative frequency of one of the possible substrings
of length 1 (i.e.1-grams). To select a set of n1-grams from the set of all possible n1-grams, it is
trivial to choose the maximum likelihood criterion (i.e to choose n1-grams with highest relative
frequency in all sequences of a heterogeneous sequence-set). From Figure (3a), it is clear that the
maximum likelihood criterion is inapplicable (e.g.: in Figure (3a), upper subfigure, red line at
sequence 9). Hence, in case of heterogeneous sequence-sets, we have to select substrings of length
n1 from the set of all possible substrings of length n1 in a random manner (see [5]). Consequently,
the power of analyzing heterogeneous sequence-sets is directly depends on sequence-set analysis
phase. Now, the research question that arises in this context can be summarized as follows: Can
we compose a dispersion map for a given heterogeneous sequence-set using the observed feature
vectors that are embedded in feature space?

To maximize the power of analyzing heterogeneous sequence-sets, after mapping each se-
quence in a heterogeneous sequence-set into feature space, we have to define another mapping
function in order to convert the extracted feature vectors to a dispersion map. A dispersion
map represents relations (variations and co-variations) between all possible pairs of feature vari-
ables rather than relations between all possible pairs of sequences. Hence, a dispersion map
is conceptually different from a score matrix. A score matrix is an output from a multiple
sequence alignment algorithm, and it can be used to evaluate the degree of similarity (or dis-
similarity) between any two sequences in a set of sequences. Moreover, the limitation of using
the existing multiple sequence alignment algorithms can be specified as follows: the homology
assumption is expected to be violated by any heterogeneous set of sequences. It should be noted
that the proposed approach is an alignment-free sequence-set analysis approach. To compose a
dispersion map for any heterogeneous sequence-set, variance-covariance matrices are computed
for the extracted feature vectors that are embedded in feature space (i.e. Cov(X(j))). The
variance-covariance matrix is a symmetric positive semidefinite matrix, where its diagonal ele-
ments represent variances, and its off-diagonal elements represent covariances (see [5, 1]). The

variance-covariance matrix of a feature vector X
(j)
1 , X

(j)
2 , ..., X

(j)
p is denoted by Cov(X(j)), and

it is defined as [1]:

Cov(X
(i)
n ) =


σ11 σ12 · · · σ1p

σ21 σ22 · · · σ2p
...

...
. . .

...
σp1 σp2 · · · σpp

 (1)

where σi1i1= E (X
(j)
i1

2
), σi1j1= E (X

(j)
i1
X

(j)
j1

) for i1, j1 = 1,2,...,p, such that E(X(j))=0. The

sample covariance matrix is denoted by ˆCov(X(j)), and it is defined as:

ˆ
Cov(X(j)) =


σ̂11 σ̂12 · · · σ̂1p

σ̂21 σ̂22 · · · σ̂2p
...

...
. . .

...
σ̂p1 σ̂p2 · · · σ̂pp

 (2)

where ˆσi1i1=
∑l

r=1 (x
(j)
ri −x̄i

(j))
2

l , ˆσi1j1=
∑l

r=1 (x
(j)
ri −x̄i

(j))(x
(j)
rj −x̄j

(j))

l for i1, j1 = 1,2,...,p. In addition, l

denotes the number of observed values of the feature variable X
(j)
i (i1 = 1,2,...,p).

For each dataset di2 hosted by node vi3 , we have to compute the distance matrix Ddi2 =
[Di1j1(γ1)] of di2 as follows:
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Di1j1(γ1) = |γ′1(Cov(X
(j)
i1

)− Cov(X
(j)
j1

))γ1| = |λ1| > 0 (3)

such that i1, j1 = 1, 2, 3, ..., |di2 | and i1 6= j1. Now, we have to compute the sorted eigenvalues
of the computed distance matrix Ddi2 = [Di1j1(γ1)] (more details about Di1j1(γ1) = |λ1| > 0
can be found in [5]). Now, one vector of sorted eigenvalues can be sent from the current node
to the main node by the dispatched agent. The vector of sorted eigenvalues is the dispersion
map of di2 or the dispersion map is defined as a vector representation. We shall now discuss the
core concept of the proposed decentralized statistical computing algorithm. The datasets under
consideration are complex and distributed datasets (i.e hosted by different nodes). Hence, by
sending the code of computations to datasets under consideration, we can locally mining those
datasets by mapping them into vectors of sorted eigenvalues (transformation with minimum
loss of information), and consequently by sending those vectors via the network, we can easily
minimize the amount of information to be transfered via the network. The dispersion vector
has the following distinguished feature: the dispersion vector offers the opportunity for the
researchers in the field to conclude the biological or environmental factors that may cause the
genetic variability and the genetic diversity in asynchronous and autonomous manner. Figure
1 illustrates the phases of computational process of the proposed Decentralized Alignment-free
Visualization Tool (DA-fVT).

Algorithm 1: The software-agent based data visualization algorithm for distributed sets
of sequences

input : Given data sets {d1, d2, ..., dn} of segmented genomes (i.e. sets of sequences) of a
known virus. Let di = {S1, S2, S3, ..., Sui} (i = 1, ..., n) (|di| = ui). Suppose that
{d1, d2, ..., dn} are distributed over m nodes (i.e m databases), and let

Ω(j) = {ω(j)
1 , ω

(j)
2 , ..., ω

(j)
p } be sets of strings, j = 1, 2, ..., l.

output: The Eigen Analysis Chart

1 At the main node(nodemain), Dispatch m software agents (Agentl, l = 1, 2, 3, ...,m) that
have the instance of the following sub-algorithm, to perform the required computations at
each node nodei(i = 1, ...,m).

2 while true do

3 foreach di2 at nodei3 do
4 foreach Si1 ∈ di2 do

5 Let X(j) = (X
(j)
1 , X

(j)
2 , ..., X

(j)
p )′ be a real-valued feature vector of

dimensionality p× 1, where the feature variable X
(j)
r (r = 1, 2, ..., p)

represents the occurrences of the string ω
(j)
r ∈ Ω(j). Map each sequence in the

sequence-set into the feature space using the feature vector X(j). The

observed feature vectors are: x
(j)
1 , x

(j)
2 , x

(j)
3 ,...,x

(j)
u .

6 For each set of sequence in Si, Find
ˆ

Cov(X(j)) as in equation 2.

7 end

8 Find the distance matrix Ddi2 as in equation 2.

9 Find the eigenvalues of Ddi2 , and send the sorted eigenvalues of Ddi2 to the main
node (nodemain).

10 end
11 Deactivate the software agent after sending the sorted eigenvalues, and set the

condition to false.

12 end
13 At the main node nodemain, Plot the Eigen-Analysis Chart after receiving the sorted

eigenvalues for all data sets under consideration {d1, d2, ..., dn}.
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Figure 1: The computational process of Decentralized Alignment-free Visualization Tool (DA-
fVT)

In this section, we presented the proposed approach to analyze and visualize sets of het-
erogeneous sequences (e.g.segmented genome of flu virus) in feature space using asynchronous
and autonomous manner. In the next section, we present results and discussion.

5 Results and discussion

As we previously mentioned, the data points under consideration are sets of heterogeneous
sequences, and therefore, in this section, we implement the proposed algorithm (visualization
tool) using real sets of heterogeneous sequences (i.e. real data points). Hence, in order to
motivate the way of testing the proposed algorithm, we select the segmented genomes of two
viruses: (i) Influenza A virus, and (ii) Ebola Virus. The following part of this section, in brief,
describes the two selected viruses.

The influenza virus infection is considered as serious public health problem in many coun-
tries. The influenza virus has highly mutation rates, which implicitly indicates the following: the
virus can change rapidly and spread quickly. The virus has negative impacts on human health,
especially for the elderly group. The influenza virus is classified under the family Orthomyxoviri-
dae [21, 3, 14]. The genome of influenza virus is a segmented genome, and it has eight segments
([9]). Each segment is encoded into either one or two proteins ([9]). The eleven RNA-proteins
of influenza virus genome are: PB1 (Polymerase protein), PB2 (Polymerase protein), PA (Poly-
merase protein), HA (Haemagglutinin protein), NP (Nucleoprotein), NA (Neuraminidase), M1
(Matrix protein), M2 (Matrix protein), NS1 (non-structural protein), and NS2 (non-structural
protein). The evidence of variability is embedded in the genetic text of the two surface proteins:
(i) haemagglutinin (HA) and (ii) Neuraminidase (NA) [15, 16]. The identification of influenza
sub-type can be accomplished using the variability of HA and NA proteins.

One of the most highly virulent viruses is Ebola virus. The Ebola virus is a negative-sense
RNA virus, and it is classified under the family Filoviridae [19]. The genome of Ebola virus is a
segmented genome. The seven RNA proteins of Ebola virus genome are: Nucleoprotein (NP),
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Nucleocapsid protein (VP35), Matrix protein (VP40), Glycoprotein (GP), Nucleocapsid protein
(VP30), Nucleocapsid protein (VP24), Polymerase protein (L).

The following experiments represent different expected implementations for the proposed
algorithm:

1. Suppose that we have four distributed datasets. Each data point is a segmented genome of
influenza A virus (i.e. set of heterogeneous sequences). Those datasets are hosted by dif-
ferent nodes. The four datasets have different sample sizes: 40, 30, 17, and 17 respectively.
The sizes of the four datasets are (in bytes): 1123290, 845460, 490194, and 485544 respec-
tively. The output of the proposed algorithm is depicted in Figure 6a. The output has the
form of line graphs. The line graphs represent the inner variation structures of the dis-
tributed datasets. It is clearly verified that the datasets under consideration have different
inner variation structures. The algorithm successfully reduces the amount of information
to be transfered over the network by 99.97174381420471% (i.e. only 0.02825618579529%
of the amount of information is expected to be transfered over the network).

2. The second implementation of the proposed algorithm is very useful in analyzing any
feature extraction process that is based on using the occurrences of 1-grams, 2-grams and
3-grams. Comparing the variation of a dataset, such that each data point is a set of
heterogeneous sequences, by considering different feature variables that can be defined as
the occurrences of n1-grams (n1 = 1, 2, and3). Suppose that we have two datasets: (i) d1:
40 segmented genome of influenza A virus (i.e. sets of heterogeneous sequences), (ii) d2: 34
segmented genome of Ebola, and we aim to compare the variation of three feature vectors
X(1), X(2), and X(3) that are defined as the occurrences of all possible 1-grams, 2-grams
and 3-grams respectively. In Figures 6e and 6f present the comparisons of the variability
of X(1), X(2), and X(3) in d1(influenza A) and d2(Ebola) respectively. It is clearly verified
that 3-grams have the highest variation compared with 2-grams and 1-grams. Next, we
shall present another implementation.

3. Now, we present a useful implementation about monitoring the variation in the process of
accumulating data points. The jump points in statistical variation can be used to indicate
the existence of jump points in biological variation. Suppose that we have two datasets:
(i) d1: 40 segmented genome of influenza A virus (i.e. sets of heterogeneous sequences),
(ii) d2: 34 segmented genome of Ebola. Figures 6b and 6c illustrate the outputs of the
proposed algorithm, specifically, by considering the data points sequentially (i.e. one data
point each time, initially, starting with 2 data points). d1 has more jump points than
d2. In this way, we can simply monitor the existence of the jump points in statistical
variation. Another way of monitoring the statistical variation can be achieved by applying
the proposed algorithm at ordered points in time (e.g. t1<t2<t3). The output is illustrated
in Figure 6d. It is verified that the jump points in statistical variation are clearly identified.

During outbreaks, suppose that we distribute mobile biomedical labs in specific geograph-
ical areas to collect data about a biological phenomenon. Building a new platform to analyze
datasets at each distributed node without transferring data to the main node will minimize
the amount of transferred data via the network, communication errors and failures, and conse-
quently will maximize data security and privacy. The algorithm can be implemented as a mobile
application. Therefore, specialists in medical sector can analyze and visualize distributed big
datasets from their mobiles or laptops or tablets, specifically, those devices have limitations in
power of computations and data-storage.

At to this point, we remark the following: the implementations of the proposed algorithm
are dealing with the way of minimizing the amount of information to be transfered over the
network, and the way of projecting datasets with data-complexity(i.e. big datasets and each

9



data point is a dataset) into real vectors of eigenvalues. Next, we shall present conclusions and
future work.

Main Node v1

v2

v3

v4

e1

e2

e3

d1 d2

e4

e5

d3

d4

v5

CodeCode

Mobile Laboratory

© Copyright, Mobile Healthcare Facilities LLC. 2014.
All rights reserved.

Figure 2: The distributed data sets: (1) Data sets@node 3: d1,d2, (2) Data sets@node 2: d3,
(3) Data sets@node 4: d4

6 Conclusions and future work

Recently, we deal with new terminology or new research fields, for example, Big Data Mining,
Biological Data Mining, and Big Biological Data Mining however, the research problem under
consideration is tagged under a new research direction, which is Decentralized Big Biological
Data Mining. The new algorithm is a visualization tool that can be used to visualize and analyze
Big-BioData (sets of sequences) in a decentralized manner. The proposed algorithm is designed
based on analyzing the distributed datasets locally, and map them into vectors of generalized
eigenvalues in a decentralized manner. The generalized eigenvalues represent the distance among
the data points under consideration.The proposed algorithm has two significant contributions:
(1) minimizing the amount of information to be transfered over the network, and (2) projecting
datasets with complexity (i.e. Big Datasets) into real vectors of eigenvalues in a decentralized
manner. The experiments effectively and significantly showed the robustness of the proposed
algorithm. In the future work, we aim to propose other various approaches, techniques and
algorithms to deal with distributed big datasets such that the each data point is a dataset (i.e
the concept of the data point is generalized to a dataset).
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Figure 6: The outputs of the proposed algorithm
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