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1. Introduction

The key parameter driving behavior of dust paridle plasma is their electric charge [1]. Presey-d
theories as well as experiments are not fully sssfoé in determining its value [2]. Moreover, the
theoretical uncertainties are increased in thenpdasheath — a think plasma layer at a wall or eddet
The standard models of dust charging in the plasimeath usually suppose Maxwellian electron energy
distribution function (EEDF) and a flux of cold imsatisfying classical Bohm criterion. In this pape
generalize this model of plasma sheath and dusticipto arbitrary EEDF with adapted Bohm criterion
We limit our considerations to collisionless omhlily collisional plasma, when the EEDF at the plas
sheath can be derived from the EEDF calculated easnored in the plasma bulk. This possibility is of
practical importance as direct measurements of Eiilire plasma sheath are questionable.

Derived theoretical formulas have been incorporaténla set of codes realized in MATLAB. The codes
characterize electrical conditions in rf (radiogwency) or dc (direct current) plasma sheath as agel
behavior of an isolated dust particle occurringreheCollective effects of dust particles are not
investigated in this contribution. As an illustieiexample of such computations we compare balgncin
radii of dust particles levitating above a plandéctode for three different distribution functions
Although applied model distributions in the bulkvBabeen chosen with identical electron number tensi
and average thermal energy, the behavior of pesticbnfined in the sheath are noticeably different.

2. Description of electronsin quasistationary collisionless plasma sheath

We supposex-axis oriented upward from the horizontally placadctrode (cathode), which is at the
origin X = 0. For the plasma layer (sheath) above the electt@Boltzmann’s kinetic equation reads
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where f is the electron distribution function in velocitpace @in_ = f d®v) andU (x,t) is potential.
Supposing sheath thickness much lower than thérefemean path, we can neglect collisional term on
ouU /ot

ou /ox

neglect the first term. The solution of kinetic atjan (1) with omitted collisional and time ternss of
general form

the right-hand side. If time changes of electriteptal are slow, |V, |>>

‘, we can also

f(XVv.v,,V,) = f{mzvf
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where signs+ /- distinguish between positive / negative velocities, i.e. velocities from/to the
electrode. We will restrict our considerations tstributions fully isotropic in velocity space (abtropic
distributions can be analyzed in similar way). Therr f (mV? /2-eU), wherev is the magnitude of



electron velocity. Substituting energy coordinage=mv? /2, the common form of EEDF is
g(e,x) ~Je f(e—eU(x) (dn, =gde), hence
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V =U -U, is voltage between a position with local potentiald (x) and some reference positiog
with potentialU, =U (X,) , where the EEDFJ, (&) is known. As the potential monotonously increases

from the electrode to the plasma bulk, we will Wseas a parameter characterizing position in thetehea
The reference point could be chosen at the shefagh e, (U, =0 by definition) or at the plasma bulk

(U, >0). Positions in the sheath in both cases satisfyx, andV < 0. Hereinafter the reference point
will be situated in the plasma bulk.

Specially, if the EEDF at the edgg is Maxwellian,
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then the EEDF (3) inside the sheath is also Maxarell
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From (3) we obtain electron number density anywlerthe sheath. The electron density at a poirth wit
potentialU is

nU) =] gU,&)de = | (e+eV)1'290T(jdg @

Maxwellian EEDF (4) gives Boltzmann distribution

LY
n=n, exp( ij ©)

This result is due to total reflections of elecsonoving towards the cathode back to the bulk.

It is useful to compare our formula (4) with someds applied alternative expression
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being a bit superficially justified by the argumehiat only electrons at the reference position with
potentialU , having energy greater thaneV (V =U —U,) can overcome the potential hill at position

with voltageU [4]. This expression does not relate the Maxweltlgstribution to the Boltzmann one, as
it should be.

Besides electron number density also electronififimences electrical conditions and dust chargiig.
will derive general expressions for electron flugssing through a planar surface parallel to teetedde
(“planar” flux) and impinging on a spherical sudaaf a dust (“spherical” flux).

In planar case we will consider the flux of eleosctowards the electrode, i.e. moving in opposite
direction to the orientation af-axis. The planar surface is situated anywhereh@n lasma sheath.
Number of electrons moving across a unit surface peit time is given by integration of



dy,(X) =|v, |dn, for v, <0. Substitutingdy, =+/2me cosf g(&)de (n/2<6<n), with EEDF
g at positionx expressed through, , we get after integration oveét
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Specially Maxwellian EEDF (4) gives the well-knofarmula
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Now consider flux of electrons caught by a sphénzaticle of radiusa and potentiall,, measured

relatively to the local undisturbed plasma. Numiiieglectrons with velocitw falling on the surface is in
general

dr, =vdn,(V) 7a* F (U, V) (9)

dn, is number of electrons in undisturbed plasma wigtocity (around)V and kinetic energye.

Attracting/repulsing effect of the particle charg® involved in the factorF. We restrict our
considerations to the orbital motion limited (OMhbgory [5], for which
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The flux per unit areg/, =T, /4rra® in position specified by local potentitl is then
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or, after substitution from (3)
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whereV, =U  +V is voltage between the particle and referencetpgjrandV, = min(U 0) +V . If

a particle is charged negatively, then the fornfataspherical surface is identical to the formuird {or
planar surface, with only the plasma voltagereplaced by particle voltagé, .

For Maxwellian EEDF (4) the above integral gives
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3. Description of ionsin quasistationary collisionless plasma sheath

As a first step we will adapt the Bohm criteriongeneral form of EEDF. This criterion gives ionagty
and density at the sheath boundagyand also specifies the plasma bulk potertigl with regard to the

sheath boundary, where by definitith(x,) = 0. The procedure partly follows the approach of eawi
article [6].
Electric field in the sheath is described by Paissquation
0 _ _e[n(9-n)]
x> &

(14)

where electron number density (U ) is commonly taken Maxwellian (5). We suppose tmeoee general

distribution (3), corresponding to the collisiordesheath. Boundary conditions at the sheath edge ar

du(x) _ 0
dx

In approximation of cold ions monoenergetic iorxfienters the sheath perpendicularly to the eleetrod
The ion velocity and density inside the sheathsgationservation of energy and continuity equation

U(x,) =0, (15)
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These equations give concentration and kineticggnierdependence on potential,
-1/2
nU)=ng (1_ﬂj , £U)=¢,-eU 7

where £, =mvVZ /2 and n_ are (so far unknown) energy and concentrationookiat the sheath

boundary. After substituting the last expressidp foisson equation, multiplying both sidesdlly /dx
and integrating, we obtain
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For the while we restrict our analysis to the \itgirof the sheath boundary, where the poteritias close
to zero. After expansion of the right-hand side ifaylor series up to the terms of second ordegete

(Z—L)J(j =§{(nes—nis)u +E(M_%JU2} (19)
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Supposing quasineutral plasma up to the sheathdaoynwe haven,, = ng = n,. Taking into account
the second boundary condition in (15), we get

(d_sz _e(dn.(0 _en ) ;. (20)
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Hence the kinetic ion energg, at the sheath edge satisfies the inequality
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which represents the generalized Bohm criteriois ttonventional to take minimum value of ion kinet
energy or velocity satisfying this inequality. Thenservation of energy also gives the bulk poténtia

U, =¢./e.

For Boltzmann distribution function the above fotenyields classical result [7]
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whereV, is the Bohm (or ion acoustic) velocity.

For collisional sheath the field strength at theath edge is slightly negative [31dU(x,)/dx<0,

therefore the above procedure giving inequality) (@dnnot be applied. Nevertheless, its validitgti#f
reasonable. Supposing the plasma just below theattshedge positively charged, we get

d(n,—n.)/dU <0 at U =0, which in fact represents the Bohm criterion (21).

Neglecting collisions of ions and thermal componehtheir velocity, the ions move directly to the
electrode in a monoenergetic beam with constamapléiux, y; =nyV,. The flux per unit spherical
surface is within the OML theory
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4. Sheath and dust particle models

System of equations describing electric field anstgarticles in the sheath are in more detailudised in
[3] or [1]. We mention here only some basic facts.

Results presented in this paper concern rf disen@dr8.56 MHz) in argon plasma with the lower eled&
powered. At this frequency the electrons followtamsaneous electric field whereas the ions respoitd
time average. The potential at the electrode israsd harmonic,

U (t) =U oo +U o SiN(a0t) (24)

Here U, is the dc self bias and , is the amplitude of the rf potential oscillatioris. capacitively
coupled rf discharge the average electron curcetite electrode is equal to the ion current, i.e

S FATROLEY (25)

where T is the rf period. This condition couplés, , andU . The dc component is taken as optional
(experimental), harmonic component is evaluated.

In asymmetric rf discharges with powered electradech smaller than the grounded one the potential
oscillations outside the sheath can be neglectpdt[@nables to define the boundary condition reg t
sheath edge as is usual for dc dishatdét,x,) =0. Formulas determining electric field, potential of

plasma bulk, electron and ion characteristics (diers energies, fluxes) including Bohm critericavik
been specified in previous sections.



As the main part of rf power is primarily absorbleg electrons, the EEDF is usually far from the
equilibrium Maxwell-Boltzmann distribution. A vergomplicated kinetic description cannot give fully
satisfactory results for EEDF. Our approach enabdesletermine EEDF in plasma bulk directly by
measurements and, if collisional processes aregiggl such experimentally determined distribution
extend in some way to the sheath.

Numerous experiments in low-pressure rf dischasfesv two-temperature character of EEDF. In our
model computations we compare equilibrium MaxwallzEDF,

_ 2 &
Gow () =0 —57 o Je exp( ij (26)

with two other related EEDF. Double Maxwellian EEB¥a superposition of two single Maxwellian
EEDF with temperature$,, T, and relative ratio$, P, , ZPi =1:
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Another modification is represented by a cutofélike two-temperature Maxwellian distribution
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where £" is the threshold energy for inelastic scatteritng (first excitation energy) andl, andT, are
temperatures for low- and high-energy electronspeetively. The constants, and c, are determined
from continuity of g, at £ = &"” and from normalization of,. to the given electron density, at the

bulk:
g” o <
c,exp——|=c,exp——|, g)de=n 30
3 r{le] 2 r{ szj {goc() 0 (30)

By virtue of briefness we do not present here thamsaficients explicitly. For the same reason wé no
present explicitly analytic expressions for the Bohriterion, number density and fluxes to planar or
spherical surfaces in collisionless planar sheatteich EEDF. Most of these formulas can be expdess

in terms of incomplete gamma function, availabl®ATLAB (gammainc).

Behavior of a dust particle in the sheath is ma@dyermined by gravitational and electric forceadér
some assumptions about the electron Debye lengtipéticle can be approximately considered as a

spherical capacitor of the radiug. Its chargeQ, and potentiall, relative to the local undisturbed
plasma are related by

Q, =4rE,r, U, (31)

The charge or potential of the particle is a resfitlectron and ion currents hitting its surfadeglecting
reflections and desorptions of ions and electroms the surface [2], the equilibrium potentid|, of the

particle is determined from the formula
<y.UU,)>=yU\U)) (32)



balancing the average electron and ion fluxes igipon the particle. As is shown in [3], the time-
averaging can be with high accuracy realized bjacipg electron number density, with its mean value

<ne>'

5. Numerical results

Previous formulas have been incorporated into séwesdes, written in MATLAB. Specialized but
cooperating modules compute electric field in theagh, charge and potential of particles, forcémac
on them, their balancing radii and resonance fregies. Computations have been performed for
collisionless rf or dc plasma sheath and severalkof EEDF defined in the bulk.

Results presented here have been made for argplasia with the same electron number density
n, = 1.0x10" m*and dc component of electrode potentigl, = -50 V (Eq. 24).

Parameters for the cutoff like the two-temperatdexwellian distribution (28) have been taken frofi
g'=115 eV, T, =29 eV, T, =T, /10. This data numerically correspond to the effecteraperature

2 2 7
T, ==<e>=—" | £g,.(6)de = 26 eV 33
eff 3 3n0 .E gOC( ) ( )

Other distributions were chosen with the same #ffectemperature: For single Maxwellian EEDF
T = 26 eV and for double Maxwellian EEDFPP, =08, T, =2 eV and P, =02, T, =52 eV.

Dust particles were supposed made of melamine fdehgde of mass densitg = 1.5x10° kg/n? and
of radius of several micrometers.

As is obvious from Fig.1, the shape of EEDF infleesn the electric field in the sheath negligibly.
Contrary to it the dust charge is sensitive to shape of electron characteristic (Fig.2). The obarg
determines behavior of a particle in the sheath.

Total force acting on a particle is mainly formey gravitational & mg) and electric QE) forces.

Magnitudes of other possible forces (ion and néwirag, thermophoretic force) are under conditions
considered here negligible. From the condition thattotal force acting on a spherical particledso we
determine its equilibrium radius, i.e. the radidsaoparticle levitating at given position above the
electrode. As is seen in Fig.3, the maximum radiua particle confined in the sheath is sensitivé¢hie
shape of electron characteristics. For single antlg Maxwellian EEDF heavier particles are cortdine

in the sheath than for cutoff EEDF although effextiemperature and electron number density are the
same. Dust particles deflected from their unstabjglibrium position (dotted lines) will fall dowto the
electrode or migrate to the higher stable equiliforpositions (solid lines) above the electrode. &xient

of dust-free zone at the electrode is independernergy distribution.

Dust particles deflected from their equilibria pmsis perform slightly damped oscillations with
frequencies, which can be directly observed. Thay Berve as a test of reliability for chosen thecaé
model. Fig.4 demonstrates that the shape of EEBeimces resonance frequencies mainly at the sheath
boundary.
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Fig. 3 Equilibrium radius versus position of Fig. 4 Resonance frequency versus height
microparticles levitating above the planar rf above the electrode for various EEDF.

electrode for different EEDF. Dotted curves
indicate unstable equilibria positions (in reality
dust-free zone).
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