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Abstract 

This paper provides a theory of determination antenna far-field pattern from near-field 

measurements over a plane-rectangular surface. Implementation of this method to MATLAB has 

been solved and computed results were compared with theoretical values. A nine-dipole antenna 

has been chosen for the simulation. 

 

Introduction 

Near-field measurement is used for very large antennas for which the far-field distance 

becomes too large to fit within actual test range or an anechoic chamber. Near-field 
measurements provide a fast and accurate method of determining the antenna gain, pattern, 

polarization, beam pointing etc. The planar near-field technique is an effective method for 

measuring the performance of large antennas and other advanced low sidelobe antennas. The 

advantage of near-field measurements is a complete characterization of the antenna performance. 

In this paper is shown the whole process of near-field measurement for a nine-dipole antenna. 

 

Near-field basics 

We consider here an ordinary antenna radiating into free space (but not superdirective 

antenna). The space surrounding the antenna (Fig. 1) is conventionally divided into two 

main regions: 

• In the far-filed region, which extends all the way to infinity, electric and magnetic fields 

decay at rate of 1/r, where r is the distance from the antenna. The angular variation of the 

fields does not depend on this distance. The inner radius of the far field is approximately 

equal to the Fraunhofer distance 2D
2
/λ, where D is the main dimension of the antenna and 

λ is the wavelength in free space [4]. 

• The free-space region between the antenna and the far field is called near-field region. The 
radial and the angular dependence of the fields vary in a more complex fashion with 

distance within this region, so that mathematical transforms become necessary to determine 

the field at location when measurements been made elsewhere. 

• The near-field region itself can be further subdivided into two another subregions (Fig. 1). 
To the reactive or evanescent near-field region, which start on the surface of the antenna 

and ends usually at a distance of one wavelength λ [4]. And to radiating near-field region 
which extends from the reactive region out to the far-field region. In this region we do the 

near-field measurements. 

 



 
Fig. 1: Division of the space surrounding the antenna 

Near-field scanning theory 

All near-field measurement systems compute the various directions in which the 

electromagnetic energy is propagating. These directions of propagating are completely 

independent of distance to the antenna under test (AUT). The near-field measurement system 

operates by measuring the phase front of the AUT and then mathematically transforming the 

phase front into the equivalent far-field angular spectrum. For a planar near-field, the phase front 
and angular spectrum are related by a two-dimensional Fourier transform. 

In our case we suggest an ideal scanning probe moving over a plane-rectangular surface 

(Fig. 2). That means we do not have to do any probe corrections. 

 

Fig. 2: Plane-rectangular scanning surface 

The plane-rectangular scan area should accomplish the following: 

• Must be large enough to accept all significant energy from the AUT. The correct scan 

dimensions can be determined by this expression 

θtan2)( ZDlenghtheight ⋅+= ,     (1) 

where D is an antenna height (length), Z is an AUT – probe distance and the θ is a 
maximum processing angle from boresight [1]. 

• The discrete positions in which the probe will sample the near field must be exactly 
defined and satisfy the Nyquist sampling theorem. 



• The sample points normally are arranged in a two dimensional grid (Fig. 2). 

• The scan pattern should not be any denser than required by Nyquist criteria. This will 
minimize data acquisition time and storage requirements [1]. 

 

Far-field transformation algorithm for plane-rectangular scanning with an ideal probe 

The transformation of phase front into an angular spectrum is often called a near-field to 
far-field transformation. Far-field can be evaluated by this expression (for ideal probe) [3]: 
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where r is a distance from scanning surface, A(kx,ky) is called plane wave spectrum (PWS) and is 

given by 
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where E(x,y,0) is distribution of electric field over a scanning surface, kx, ky and kz are a 

wavenumbers in x, y respective z direction and can be written as functions of angles θ and φ in 
spherical coordinate system. 
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Integrals in equation (2) can be replaced by sums for the set of n x m near-field samples 

measured on a plane-rectangular scan surface. Then we can write: 
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where Ei,k(x,y,0) is complex sample of E on scan surface and xi and yk are probe positions for this 

sample. Finally the far-field in spherical coordinate system and for the discrete PWS is given by 
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Plane-rectangular near-field measurement simulation in Matlab 

Firstly has been constructed a mathematical model of a nine-dipole antenna and then were 

computed samples of the electric field over a whole scanning surface. The set of samples 

represent a near-field measured with an ideal probe. 

At the second the samples are transformed to the far-field and spatial frequency spectrum 

A(kx,ky) is converted to an angular spectrum A of angles θ and φ. 

At the last the angular spectrum A(θ,φ) is multiplied by a wavenumber kz and compared 
with theoretical results. 

 

Nine-dipole antenna model 



Antenna consists of nine dipoles and lye in x-y plane as is shown in Fig. 3. The dipoles 

have spacing λ/2 and each dipole is λ/4 long. All dipoles are feed with the current 1 A and phase 

shift between dipoles is 0°. Scanning surface with dimensions 20λ x 20λ lye at a distance z0 = 3λ 

from AUT and is coplanar with x-y plane (Fig. 3). The sampling points are spaced λ/2 apart and 
cover the whole scanning surface. Samples of the near-field have been evaluated according this 

expression: 
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where Ii is a current by i-th dipole and ri is a distance from the i-th dipole to the actual sampling 

point, Fd(θ,φ) is a radiation function for a symmetric dipole antenna and is given by [5]: 
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where k is a wavenumber, l is a length of the dipole and φ is an angle measured from the dipole 

axis. 
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Fig. 3: Model of the nine-dipole antenna and its orientation in coordinate system 

The source code of nine-dipole antenna is described below together with scanning area 

definition and with a kernel for near-field samples computation. Variables and constants 

definition is not listed. 

 
%----------- scanning area definition ------------------------------------ 

velikostX = 20*lambda;        % size of the scanning area 

velikostY = velikostX; 

Nx = (velikostX/lambda)*2+3;  % samples at x axis 

x = linspace(-(velikostX/2), (velikostX/2), Nx); 

dx = abs(x(2)-x(1)); 

Ny = Nx;                      % samples at y axis 

y = linspace(-(velikostY/2), (velikostY/2), Ny); 

r0 = 2*lambda;                % distance of scanning surface from the AUT 

 

 

 

θ 
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%------- testing antenna (AUT) definition (nine-dipole antenna) ---------- 

Nd = 9;                       % number of dipoles 

dd = lambda/2;                % dipole spacing 

d = linspace((-(Nd-1)/2)*dd, ((Nd-1)/2)*dd, Nd); 

I = ones(1,Nd);               % currents for dipoles (1 A) 

l = lambda/4;                 % dipole lenght 

Fd = j*(cos(k*l)*cos(theta)-cos(k*l))/(sin(theta)); % radiation function of 

 symetric dipole 

 

%----------- near-field samples computation ------------------------------- 

E = zeros(Nx,Ny); 

Ehelp = zeros(1,Nd);     % help vector 

for m=1:Ny 

    for n=1:Nx 

        for i=1:Nd 

           E(n,m) = E(n,m) + 60*(cos(k*l*(x(n)/sqrt(r0^2+(y(m)-d(i))^2... 

     +x(n)^2)))-cos(k*l))/(sqrt(r0^2+(y(m)-d(i))^2)/... 

     sqrt(r0^2+(y(m)-d(i))^2+x(n)^2))*I(i)*(exp(-j*k*sqrt(r0^2... 

     +(y(m)-d(i))^2+x(n)^2))/sqrt(r0^2+(y(m)-d(i))^2+x(n)^2)); 

        end      

    end 

end 

Emax = max(E); 

maxE = max(Emax); 

Eneardb = 20*log(abs(E/maxE)); 

 

figure(1);               % 3D near-fiel distribution 

surf(x/lambda,y/lambda,Eneardb); 

title('Rozlozeni normovaneho modulu pole v blizke oblasti (z = 2*lambda)'); 

xlabel('y[lambda]'); 

ylabel('x[lambda]'); 

zlabel('abs(Enear)'); 

 

% depiction of E (module and phase) in the near-field for two orthogonal cuts 

 

figure(2); 

subplot(2,2,1); 

plot(x/lambda,Eneardb(:,((Ny+1)/2))); 

title('rez rovinou y = 0'); 

xlabel('x[lambda]'); 

ylabel('abs(Enear)'); 

subplot(2,2,2); 

plot(y/lambda,Eneardb(((Nx+1)/2),:)); 

title('rez rovinou x = 0'); 

xlabel('y[lambda]'); 

ylabel('abs(Enear)'); 

subplot(2,2,3); 

plot(x/lambda,angle(E(:,((Ny+1)/2)))/(2*pi)*360); 

xlabel('x[lambda]'); 

ylabel('phase(Enear)'); 

subplot(2,2,4); 

plot(y/lambda,angle(E(((Nx+1)/2),:))/(2*pi)*360); 

xlabel('y[lambda]'); 

ylabel('phase(Enear)'); 

 

The corresponding x and y component of the amplitude and phase distribution over a 

scanning surface computed using expression (7) and source code above is shown in Fig. 4. 
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Fig. 4: Amplitude and phase distribution in the near-field of the AUT 

Near-field to far-field transformation and conversion to an angular spectrum 

Before that we do the transformation itself we must define angles where we like to compute 

the electric field E and fill it into equations (4). Now we can perform a 2-D Fourier transform for 

each combination of kx and ky. After transformation we simply convert the spatial frequency 

spectrum to the angular spectrum by using inverse equations to equations (4). Source code 

corresponding to this transformation is listed below. 

 
----------- near-field to far-field transformation -------------------- 

A = zeros(t,t);         % spatial spectrum computation 

for m=1:t 

    for n=1:t 

        for h=1:Ny 

           for i=1:Nx 

                A(n,m) = A(n,m) + E(i,h)*exp(j*k*(x(i)*kx(n,m)+y(h)*ky(n,m))); 

            end 

        end 

    end 

    t-m 

end 

A = A/(Nx*Ny);     

 

 

 

Comparison of transformed near-field with theoretical results 

The last step to reach the radiation pattern in the far-field from a set of near-field samples is 

multiplying the angular spectrum A(θ,φ) by a wavenumber in z direction kz. After this procedure 

we observe far-field pattern of the AUT (Fig.6 – solid line) for two orthogonal cuts (φ = 0° - 



down and φ = 90° - up). Theoretical radiation pattern of the AUT consisting of nine dipoles 

(Fig. 4) is evaluated according expression [5]: 
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where Nd is a number of dipoles and d is spacing between dipoles. Source code for theoretical 

radiation pattern is listed below. 

 
% ------ far-field computation (theoretical values for comparison) -----------
Evzdal = zeros(t,t); 
for m=1:t 
    for n=2:(t-1) 
        Evzdal(m,n) = ((cos(k*l*cos(phi(n)))-cos(k*l)) / sin(phi(n)))... 
      *(sin(Nd/2*k*dd*cos(theta(m)+pi/2)))/(sin(1/2*k*dd*cos(theta(m)+pi/2))); 
    end 
end 
Evzdalmax = max(Evzdal); 
maxEvzdal = max(Evzdalmax); 
Evzdal = abs(Evzdal/maxEvzdal); 
Evzdaldb = 20*log(Evzdal); 
figure(3); 
surf(phi/(2*pi)*360,theta/(2*pi)*360,Evzdaldb); 
title('Vyzarovaci diagram ziskany vypoctem'); 
xlabel('phi[°]'); 
ylabel('theta[°]'); 
zlabel('abs(Efar)'); 
 
% -------- multiplying the angular spectrum by a wavenumber ------------------ 
for i=1:t                
    A(i,:) = kz.*A(i,:); 
    A(:,i) = rot90(kz).*A(:,i); 
end 
 
Amax = max(A);           
maxA = max(Amax); 
A = A/maxA; 
F = abs(A); 
Fdb = 20*log(F); 
 
figure(4);       % depiction of spatial spectrum for two orthogonal cuts 
subplot(2,1,1); 
stem(ky(:,45),abs(A(:,45))); 
title('Rez prostorovym spektrem v rovine kx=0'); 
xlabel('ky'); 
ylabel('abs(A)'); 
subplot(2,1,2); 
stem(kx(45,:),abs(A(45,:))); 
title('Rez prostorovym spektrem v rovine ky=0'); 
xlabel('kx'); 
ylabel('abs(A)'); 
 
figure(6);           % theoretical and transformed values comparison 
subplot(2,1,1); 



plot(theta(2:(t-1))/(2*pi)*360,Evzdaldb(2:(t-1),45),'b',theta(2:(t-
1))/(2*pi)*360,Fdb(2:(t-1),45),'r'); 
xlabel('theta[°]'); 
ylabel('abs(Evzdal/Emax)'); 
subplot(2,1,2); 
plot(theta(2:(t-1))/(2*pi)*360,Evzdaldb(45,2:(t-1)),'b',theta(2:(t-
1))/(2*pi)*360,Fdb(45,2:(t-1)),'r'); 
xlabel('phi[°]'); 
ylabel('abs(Evzdal/Emax)'); 
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Fig. 5: Comparison of theoretical and transformed far-field for two orthogonal cuts 

As we can see on Fig. 5 very good agreement with theoretical pattern (dashed line) over 

main lobe and first two side lobes was reached. At a third side lobe is maximum error slightly 

greater than 3 dB. Here is good to say that the scanning area is about five times larger than a 

greatest dimension of the AUT that means on a frequency of 3 GHz we must use a scanning area 

with dimensions 2 m x 2 m for this AUT. 

 

CONCLUSION 

Near-field measurements provide fast and accurate method for the measurements of the 

large antennas that cannot be fit to an anechoic chamber or antennas, which have the far-field 

region to far. Plane-rectangular scanning is more frequently used in near-field measurements than 

cylindrical and spherical scanning because most directive antennas have in near-field aperture 

distribution slightly larger than the projected area of the antenna and of course the setup of planar 
scanning is very simple and transformation near-field to far-field is relatively easy. This method 

provide very accurate results for antennas which has most of the electromagnetic energy 

concentrated in a spatial angle of c. 120° (Fig. 5). For less directive antenna is better use 

Theoretical 

Transformed 

Theoretical 

Transformed 

In the cut φ = 90° 

In the cut φ = 0° 



cylindrical or spherical scanning. 

Theory of plane-rectangular scanning and the process of evaluation radiation pattern from a 
set of near-field samples have been described. The transformation of the near-field to far field has 
been shown on the example of nine-dipole antenna and whole configuration has been 
implemented to MATLAB, results have been compared with theoretical values as well. 
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