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Abstract: The recognition of 2D binary objects would be invariant to the transla-
tion, scaling and rotation. This problem can be solved by the TSR invariant moments.
The calculation of them begins with general moments, over central and normalized mo-
ments and then seven invariant moments are produced. Thus every 2D binary object is
represented as a pattern from R

7 and after the second normalization as a pattern from
[0; 1]7. It enables to use the arti�cial neural networks for the �nal TSR invariant cat-
egorization. The self-organization technique was used to learn Kohonen SOM arti�cial
neural network.
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1 Introduction

The recognition of 2D objects is a traditional task for the arti�cial neural network (ANN).
As in many other applications, the preprocessing and its small details have the signi�cant
role and in�uence to the quality of 2D object recognition. The paper is not oriented to
the optical character recognition (OCR). That is why the invariance to the translation,
scaling and rotation (TSR) of given object is necessary. But alas the TSR invariance is
not a general property of ANN. The process of TSR invariance learning from examples
would be too expensive in sense of ANN structure complexity and the time complexity
of learning. The TSR invariant system based on invariant moments was introduced by
Hu [3]. A very good illustrative example of TSR invariant recognition was given by
Schalko� [4]. The invariant moments varies in order in this example. Thus the prepro-
cessing includes binary object separation, the calculation of general, central, normalized
and invariant moments and the normalization of invariant moments. The traditional
SOM with Kohonen learning was used for the �nal recognition.

2 Task description

Having a set of 2D binary images of various types, shifts, sizes and angles of rotation,
there is necessary to categorize them using SOM network. We used ten classes of 2D
objects. Every class is represented by sixteen objects in the training set (TRS) and using
two objects in the testing (veri�cation) set (TSS).

3 Invariant preprocessing

Any general binary image can be represented as a function f : R2 ! f0; 1g. Three types
of moments are de�ned in the literature [2].



3.1 General moments

General moment of degree p + q is de�ned as
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where p; q 2 N0 . But general moments are not invariant to translation, scaling and
rotation. The �rst disadvantage is eliminated by using central moments.

3.2 Central moments

Let xt = m10=m00, yt = m01=m00. Then
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is called central moment of p + q order. The invariance to scaling is the main aim of
moment standardization.

3.3 Standardized central moments

Standardized central moment of p+ q order is de�ned as
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where
! =

p+ q

2
+ 1:

The rotation invariance is the most di�cult of all aims and can be solved individually.

3.4 TSR invariant moments

Hu [3] developed the system of seven TSR invariant moments:
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4 Invariant pattern set

Every 2D binary object is than converted to the vector ~' = ('1; : : : ; '7) 2 R
7 which

represents the object in 7th dimensional vector space. Aplying the previous principle to
m 2 N objects we obtained the matrix representation of given pattern set
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where �ij is the value of jth invariant for the ith object. Both average values of invariant
moments and their variances have various sizes. That is why the column normalization
is necessary. Let aj = min

k
(�kj), bj = max

k
(�kj) > aj. Than elements of normalized

matrix �� are
��ij =
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2 [0; 1]

Thus the vectors ~a;~b 2 R
7 are parameters of signal processing which are obtained from

training set TRS. The function called tsr was created in Matlab environment to realize
the process from the set of binary objects to the matrix ��.

5 SOM as classi�cator

There is a time enough to �nalize the process of classi�cation using Kohonen [1] SOM
ANN for the cluster forming and relationship visualization. Let N 2 N be a number
of SOM output neurons. Then the SOM realizes a function SOM� : R7 ! f1; : : : ; Ng.
The input domain of SOM� is the space of invariant moments and the output domain
is the space of SOM neuron indices. The function SOM� enables to decide, which of
the output neurons is the winner using the 7-tuple of invariant moments. The standard
hexagonal topology was used for N = 48. The output neurons are organized in six rows
with eight elements inside. The SOM learning began with 1000 epochs for � = 0:5; R = 8
and �nished with 10000 epochs for � = 0:05; R = 3. The standard software [7] was used
for the realization of learning process. The quality of categorization can be measured
using several simple criteria. Let C1 be number of classes from training set which are
represented by more than one neuron of SOM. Let C2 be number of SOM neurons which
are occupied by more than one class from the training set. Let C3 be number of classes
from testing set which are represented by more than one neuron of SOM. Let C4 be
number of SOM neurons which are occupied by more than one class from the testing
set. Let C5 be number of miss classi�ed objects from the testing set (they are located
in the neurons which corresponds with another class from the training set). Let C6 be
number of unidenti�ed objects from the testing set (they are located in the neuron which
is not occupied by any object from the training set). In our case the classi�cation of 2D
binary objects seems to be successful because of C1 = 4; C2 = 1; C3 = 0; C4 = 1; C5 =
0; C6 = 0: Because of C2 and C4 values we used the revisited SOM for similar objects
where three most di�erent objects were removed. The SOM learning (with the same
map size) began with 1000 epochs for � = 0:5; R = 8 and �nished with 10000 epochs for
� = 0:02; R = 5. It comes to criteria values C1 = 3; C2 = 0; C3 = 0; C4 = 0; C5 = 0; C6 =
0:



6 Conclusion

The experiments prove the possibility of using Kohonen's SOM for the classi�cation of
grayscale objects transformed by translation, scaling and rotation. Seven features based
on moments were used for description of objects, the projection of invariant vectors
using PCA proved the object separability. The results are surprisingly optimistic. There
are independent clusters of objects from given classes, which were produced by SOM
network. Only two classes of ten were fusing. It is possible to eliminate this e�ect by
using the revisited SOM for similar objects.
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