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Abstract

An algorithm is described for defining passive parameters of two-poles RLC, with whose help it is possible to

compensate a three-phase load. The method is valid for sinusoidal or nonsinusoidal, balanced or unbalanced

three-phase power system with linear or nonlinear load. The problem is formed as an optimization problem for

minimizing losses in line. Given calculation method is illustrated by numerical problem.

Defining the solved problem

Three-phase non-linear load of inductive character is

connected to balanced three-phase network, whose

voltages are sinusoidal functions with period T, Fig. 1.

The load draws currents i1(t), i2(t), i3(t) that are

periodical, generally unbalanced and nonsinusoidal.

To the load terminals shunt compensators are attached

that contain two-poles RLC. The inductance of

reactance coils is chosen so that resonance frequency fr
of the two-poles is distanced from the frequency of

higher harmonics generated by the nonlinear load,

usually  fr = 189 Hz or fr = 134 Hz. The network is

connected with the load through line with currents

il1(t), il2(t), il3(t). Time course of voltage on load

terminal is known and we define parameters R, L, C of

compensation two-poles, for which the losses in line

are minimal. We minimize the functional, which is

objective function
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Calculation of compensation of two-poles parameters

Instantaneous values of phase voltages and line voltages of a balanced network are
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Currents in wye-connected compensation two-poles  Ri Li Ci (i = 1,2,3) are
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The reactance coil has inductance Li , which is defined so that the two-pole has the chosen resonance frequency

fr , thus
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Fig. 1. Three-phase circuit structure.



Let its resistance be k-multiple of inductive reactance, thus
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Then phase angle 1 2 3
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It is possible to express equation (5) using equations (6) and (7) in the form

i ij

ij

C U
I

A
= (9) where

2
2

2

2 4 2

0 0

1
A

k

ω ω

ω ω ω

 
= + − 

 
(10)

instantaneous line-currents in eq. (1) are calculated from equations
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So the optimization problem is formulated. The solutions are the parameters of compensation two-poles. If the

load is linear, unbalanced and of inductance character, it draws currents
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Numerical minimization of the objective function (1)

All above-mentioned formulas were implemented using programming language of computational system

MATLAB and MATLAB Optimization Toolbox. At the beginning current amplitudes I12, I23 and I31 had been

computed – see equations (5). Constants definitions and auxiliary computations are not given here, as it is

mentioned above. In the second step variables A1, A2 a A3 were computed using equations (10), i.e. for example
A1=(0.1.^2).*((omg.^2)./(omg0.^4))+(((omg./(omg0^2))-(1./omg)).^2);
Computation followed with calculating of relevant amplitudes according to equation (5), i.e. for example

I12=C1.*(U12./sqrt(A1)); and currents in compensation two-poles using equation (4) , i.e. for example
i12 = I12.*sin(omg.*t+(pi./6)-psi1);
Before current in the load were calculated, we had computed following auxiliary variables, which represents

final angles. We need to calculate these angles to make program code more transparent and we need to know it

in the next part of computation, i.e. for example
ang_i2 = omg.*t+((-52.*(2.*pi./360))-((2./3).*pi));
Calculation of current in the load according to equation (12), i.e. for example
i1=I1.*sin(ang_i1);
The part of program code shown above generated a course of currents in case of linear load. In case of non-linear

load this course must been adjusted, i.e. for example
i1 = ~((mod(ang_i1,pi) < angle_4_t) & (mod(ang_i1,pi) > 0)).*i1;
Some parts of the currents i1, i2 and i3 courses had been levelled with the zero by this part of program code,

according to value of variable angle_4_t. This method produced required course of currents. At the end of

computation the courses of currents il1, il2 and il3 were calculated with help of conditions (11)
il1=i1+i12-i31; il2=i2+i23-i12; il3=i3+i31-i23;

Final sum of squares of these currents was computed:  y=(il1.^2)+(il2.^2)+(il3.^2);

The numerical integration was based on equation (1). A standard MATLAB functions quad and quadl can be

used. These functions used recursive adaptive Simpson quadrature algorithm. Function quad(fun, a, b)

approximates the integral of function fun from a to b  within an error of 10
-6
. Function fun accepts  vector x and

returns  vector y. Using form quad(fun, a, b, tol) uses an absolute error tolerance tol instead of the default (10
-6
).

In our calculations it was needed to set this tolerance usually between 10
-7
 and 10

-9
 to reach an adequate

accuracy of integration. For this reason we used function quadl instead of quad. The function quadl should be

more efficient with high accuracies and smooth integrands. Finally we used this function in the following form

quadl('fun',0,T,1e-8,[],C1,C2,C3) / T;

Result of this integration represents our objective function. To solve optimization problem, we applied standard

MATLAB functions fminsearch, fminunc and fmincon included in MATLAB Optimization Toolbox.
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Fig. 3. Time-dependency of the current of the load.

Function fminsearch is generally referred to as unconstrained non-linear optimization. We used it in form
[min,fval,exitflag,output]=fminsearch(@objective_f,input,options);

The variable options represent set of initial parameters of this function.

Function fminsearch uses algorithm based on the Nelder-Mead simplex direct search method. This is a method

that does not use numerical or analytic gradients as in fminunc or fmincon (see below). When the solving

problem is highly discontinuous, fminsearch may be more robust than fminunc. Function fminunc is generally

referred to as unconstrained non-linear optimization of multivariable function. We used it in form
options.GradObj='on';

[min,fval,exitflg,output,grad,hessian]=fminunc(@objective_f,input,options);

The variable options represents set of

initial parameters of this function as

above. Many parameters are same as

parameters of the function fminsearch.

We used special parameter GradObj sets

'on' – it means that user defines

computation of gradient for the objective

function.

Function fminunc uses algorithm based

on the BFGS (Broyden, Fletcher,

Goldfarb, Shanno) Quasi-Newton

method with a mixed quadratic and

cubic line search procedure (in case of

medium-scale optimization). The DFP

(Davidon, Fletcher, Powell) formula is

used to approximate the inverse Hessian

matrix. In case of Large-Scale

Optimization an algorithm subspace

trust region method based on the

interior-reflective Newton method is

used. Each iteration involves the approximate solution of a large linear system using the method of

preconditioned conjugate gradients (PCG). When it is needed to eliminate improper values of variables (e.g.

negative values of capacitance) we implement function fmincon. This function finds a minimum of a constrained

non-linear multivariable function. We used it in form

mat_A=[-1,0,0;0,-1,0;0,0,-1]; vec_b=[0;0;0]; options.GradObj='on';

[min,fval,exitflag,output,lambda_v,grad_v,hessian_v]=fmincon(@criteria_f,
input,mat_A,vec_b,[],[],[],[],[],options);

Variable mat_A represents the matrix

A of the coefficients of the linear

inequality constraints and vec_b

represents corresponding right side

vector b (i.e. A x ≤ b).

Function fmincon uses algorithm

based on the Sequential Quadratic

Programming (SQP) method (in

case of medium-scale optimization).

Quadratic Programming (QP)

subproblem is solved at each

iteration. An estimate of the Hessian

of the Lagrangian is updated at each

iteration using the BFGS formula

(see fminunc above). A line search is

performed using a merit function.

The QP subproblem is solved using

an active set strategy.
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Numerical problem

Network is according to Fig. 1. Line voltages are 3 380V,U =  2 100 .fω π π= =  Instantaneous values of

currents in the load are (Fig. 2)

0 for   0 <  t  <   α

Ii sin(ωt  −  ψi) for   α  <  t  <  2π  , i = 1, 2, 3

where 
1 1 2 2 3 3

, 2 / 3, 2 / 3ψ ϕ ψ ϕ π ψ ϕ π= − = − − = − + . Calculation is done for 45α =

o  and
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Compensation is done using two-poles ( 1, 2,3)
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valid. Minimazing functional (1) we get
5 5 5

1 2 3
2,841.10 F, 4,184.10 F, 4,645.10 FC C C

− − −

= = =

1 2 3
0,1568 H, 0,1065 H, 0,0959 HL L L= = =

1 2 3
4,926 , 3,345 , 3,013R R R= Ω = Ω = Ω

Conclusion

In this paper a method has been shown that enables to define the optimal values of parameters of compensation

two-poles RLC, providing rigid supply mains. The proposed theory is valid for sinusoidal or nonsinusoidal,

balanced or unbalanced three-phase power system. It can be easily extended to the power system with zero-

sequence current, and/or voltages.
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