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Abstract 

 
The use of pseudospectra is widespread in various applications, e.g. control 
theory, acoustics, vibrating systems. Through pseudospectra we can gain insight 
into the sensitivity of the eigenvalues of a matrix to perturbations that is 
convenient for robust control. We have implemented in Matlab a method to 
visualize ε-pseudospectra for n×n polynomial matrix of degree greater than 2. We 
compute pseudospectrum for each point of the complex plane using transfer 
function approach. Although it might seem to be time consuming, we have 
testified that other methods as for instance curve tracing algorithm don’t give 
good results. They show problems with convergence. We have also tested 
straighforward computing after the definition which was more time consuming 
than the transfer function approach. To visualize pseudospectra we used above all 
functions contour and contourf.  

 

1. Introduction 
 

Summarizing the history of pseudospectra in just a few words we can say that it have been 
invented several times matching various problems as stability of invariant subspaces of 
matrices, developing techniques for guaranteed-accuracy eigenvalue computations, unstable 
eigenvalues of spectral discretization matrices for differential matrices and structured 
perturbations of a matrix in context of spectral value sets in control theory. 
First, the definitions of pseudospectra for numerical matrices appeared, followed by 
advances in polynomial eigenvalue problems. Let mention here both of them.   
Consider matrix A ∈ Cn×n and Λ(A) be the spectrum of A. The smallest singular value is 
denoted by σmin(A) and Euclidean norm for vectors and spectral norm as the corresponding 
norm for matrices by || ⋅ ||. Than the following observation by Trefethen [1] is primary for 
the definition of the ε-pseudospectrum: 
For A ∈ Cn×n, ε ≥ 0 and z ∈ C the following conditions are equivalent: 
1. ||(zI - A)-1|| ≥ ε-1  
2. there exists a matrix E ∈ Cn×n, ||E|| ≤ ε, such that z ∈ Λ(A + E) 
3. σmin(zI - A) ≤ ε 
The collection Λε(A) of complex numbers z that fulfills one of the above conditions is called 
the ε-pseudospectrum of matrix A [2]. 
In polynomial case we work with matrix P(λ) = λmAm + λm-1Am-1 +… +A0 where Ak ∈ Cn×n, k 
= 0:m. The polynomial eigenvalue problem is to find the solutions (x,λ) of P(λ)x = 0. If x ≠ 
0 then λ is called an eigenvalue and x the corresponding right eigenvector. The set of 
eigenvalues of P is denoted by Λ(P).  
 
 



The ε-pseudospectrum of P is defined by  
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allow freedom in how perturbations are measured. 
When P(λ) = A - λI, ∆P(λ) = ∆A and α1 = 1, definition (1) reduces to the standard 
definition of ε-pseudospectrum of a single matrix 
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In recent years, several methods for computing pseudospectra have been presented [2], [3], 
[4]. Some of these will be dealt in following paragraph. 

 

2. Existing methods 
 
In general, there exist two possible ways how to solve the problem of computing and 
vizualizing pseudospectra [5]. The first class of algorithms is represented by so called grid 
algorithms. In brief, these algorithms consist of selecting appropriate region of the complex 
plane, covering it with a grid and computing values of pseudospectrum for each z on the 
grid. In the second class belong path-following algorithms. In particular steps of these 
algorithms it is fundamental to find a point on the boundary of the desired pseudospectrum, 
follow from it a curve in the complex plane on which the value σmin(zI - A) is constant. 
Both grid and path-following approaches have limitations. Grid algorithms require greater 
computing time than path-following algorithm because the minimum singular value of zI-A  
must be computed for each node of the grid. Therefore, the user of software working on this 
principle should be very cautious with fineness and size of the grid. On the other hand, path-
following algorithms appear to be dangerous due to problems with convergence. 

 

3. Extension for higher degree polynomial matrices 
 

Traditional algorithms for vizualizing ε-pseudospectra of polynomial matrices are usually 
restricted on polynomial matrices up to quadratic ones and don’t handle matrices of higher 
degree. To solve this problem we have decided to apply and test a transfer function 
approach [3] with extension on polynomial matrices of order greater than 2. 
We outline here basic steps of this algorithm. Let consider the equation 
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that can be written as 
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where F and G, called companion matrices, are defined by 
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Hence 
 

[ ] [ ] u

I

zGFI

u

zGFIvuzP



















−

−=



















−

−== −−−

0

0

)(00
0

0

)(00)( 111 M
L

M
L  (6) 

 
and finally 
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After these matrix operations we have to figure out the largest singular value of P(z)-1.  
This method is obviously effective even for higher degree polynomial matrices unlike e.g. 
methods based on Schur form that are usable only for degree m ≤ 2. 
The presented method was implemented in Matlab in function pspec. Functions 
contour and contourf are used to draw the pseudospectrum. We show some of the 
results here. 
In the first example we create a 4-by-4 polynomial matrix of degree 4 
P = prand(4,4) 
P =  
  Column 1 
     0.071 + 0.32s + 0.5s^2 + 1.3s^3 - 0.55s^4  
     1.2 - 0.015s + 0.54s^2 - 0.72s^3 - 0.66s^4 
    -0.02 + 0.28s + 1.1s^2 + 0.62s^3 - 1.8s^4   
    -0.33 - 0.5s - 0.036s^2 - 0.17s^3 - 0.96s^4 
  
  Column 2 
     0.26 - 0.013s - 0.58s^2 + 2.1s^3 - 0.26s^4 
     0.31 + 0.11s + 1.8s^2 - 0.28s^3 + 2.2s^4   
     0.7 + 0.81s + 0.64s^2 + 1.3s^3 + 0.33s^4   
     1.3 + 0.44s + 1.3s^2 - 0.5s^3 - 1.1s^4     
  
  Column 3 
    -1.4 + 1.8s + 0.33s^2 - 1.1s^3 + 0.62s^4   
     1.5 - 1.9s - 1.7s^2 - 0.57s^3 - 0.19s^4   
    -0.67 - 0.15s - 2.4s^2 + 0.47s^3 + 0.12s^4 
     0.81 + 0.041s - 0.76s^2 - 0.089s^3 - 2s^4 
  
  Column 4      1.3 - 0.9s + 0.14s^2 - 0.14s^3 - 1.2s^4     
     0.0089 + 0.84s - 0.72s^2 - 0.72s^3 - 0.2s^4 
    -0.59 - 0.65s - 1.1s^2 - 0.048s^3 + 0.38s^4  



     1.1 - 0.98s - 0.69s^2 + 1.3s^3 - 0.91s^4  
and vizualize its pseudospectra by typing 
pspec(P) 

 
Fig. 1 Pseudospectra of matrix P from the first example (with default settings of the grid) 

In the second example we assume matrix with imaginary ceofficients: 
P = prand(4,8) +j*prand(4,8);   
We set some options of the vizualization by structure 
O = struct('grid',50,'levels',50,'epsilon',[],'axis',[]) 
O =  
       grid: 50 
     levels: 50 
    epsilon: [] 
       axis: [] 
Than the pseudospectra are computed by 
pspec(P,O) 

 
Fig. 2 Pseudospectra of the polynomial matrix with complex coefficients from second example 



 
By changing the axis settings we can “cut out” another region: 
O = struct('grid',50,'levels',50,'epsilon',[],'axis',[-1 1 -1 1]) 
O =  
 
       grid: 50 
     levels: 50 
    epsilon: [] 
       axis: [-1 1 -1 1] 
pspec(P,O); 
 

 
Fig. 3 Cutout of the previous figure 

There are many other possibilities how to depict the ε-pseudospectrum. Look at the example 
in the next paragraph. 
 

4. Example 
 

In MIMO systems in control theory the location of the eigenvalues of matrix polynomials 
determine the stability of the system. 
Consider the matrix polynomial  
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We are searching for values of α for which P(z) has all its eigenvalues inside the unit circle. 
To solve such a task a visualization of pseudospectra of matrix P(z) can be used as shown in 
Fig. 4. 
 
 
 
 
 



 
 

 
Fig. 4 From this vizualization the values of α ,for which P(z) has all its eigenvalues 

inside the unit circle, can be easily read  

Here we have proposed an application of ε-pseudospectra in domain of robust control. 
 

5. Conclusions 
 

We have implemented and testified a transfer function approach to visualize an ε-
pseudospectra of n-by-n polynomial matrix of degree even greater than 2. This algorithm 
seems to be suitable for this task. Computing pseudospectrum after the definition appeared 
to be more time consuming. We have also excluded path-following algorithms that are more 
convenient for numerical matrices. In case of polynomial matrices they show problems with 
convergence. 
Further work aims at visualizing pseudospectra when eigenvalues at infinity exist. In this 
case, displaying pseudospectrum in 2D might be confusing. Therefore it is advisable to 
expand to 3D and represent pseudospectrum on Riemann sphere using stereographic 
projection. 
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