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Abstract: In geomechanics and biomechanics there are problems whose investigations
lead to solving model problems based on variational formulations. Such problems are
frequently formulated by variational inequalities as they physically describe the principle
of virtual work in its inequality form. This report is devoted to solution variational
problems by using MATLAB. In the first part of the contribution we will formulate
variational inequality problem, in second part ist finite element approximation and in the
third part numerical experiments, e.g. some results on mathematical simulation of total
knee joint replacement, will be presented.

1. Formulation of the contact problem
Let the investigated part of the elastic body occupy a union Ω of “s” bounded domains

Ωι, ι = 1, ..., s in IR2, with Lipschitz boundaries ∂Ωι. Let the boundary ∂Ω =
⋃s

ι=1 ∂Ωι

consist of four disjoint parts, i.e.

∂Ω = Γu ∪ Γτ ∪ Γc ∪ Γo.

Let us denote

Γkl
c = ∂Ωk ∩ ∂Ωl, k, l = 1, . . . , s, k 6= l, Γc =

⋃
k,l Γkl

c , Γu =
⋃s

ι=1 Γι
u,

Γι
u = Γu ∩ ∂Ωι, Γι

o = Γo ∩ ∂Ωι, Γτ =
⋃s

ι=1 Γι
τ , Γι

τ = Γτ ∩ ∂Ωι.

Assume that either

meas Γkl
c > 0 or Γkl

c = ∅
and either

meas Γι
u > 0 or Γι

u = ∅.
Let body forces F, surface tractions P and boundary displacements u0 are given.

We have the following problem P : find the displacements uι in all Ωι such that
∂

∂xj
τij(uι) + F ι

i = 0 in Ωι, ι = 1, . . . , s, i = 1, 2, (1)

τij(uι) = cι
ijkmekm(uι) in Ωι, uι = uι

0 on Γι
u, (2)

uι
n = 0 and τ ι

t = 0 on Γι
o, τij(uι)nι

j = P ι
i on Γι

τ (3)

and on every Γkl
c the folloving conditions are satisfied:

uk
n − ul

n ≤ 0, τ kl
n ≤ 0, (uk

n − ul
n)τ k

n = 0. (4)

We denote the stress tensor by τij, eij(uι) = 1
2( ∂ui

∂xj
+ ∂uj

∂xi
),

uk
n = uk

i n
k
i , ul

n = ul
in

k
i = −ul

in
l
i, (no sum over k or l),

uk
t = uk

1n
k
2 − uk

2n
k
1, ul

t = ul
1n

k
2 − ul

2n
k
1,

τ k
n = τ k

ijn
k
i n

k
j , τ k

t = (τ k
ti), τ k

ti = τ k
ijn

k
j − τ k

nnk
i , τ kl

t ≡ τ k
t .

In what follows, we introduce

W =
∏s

ι=1[H1(Ωι)]2, ‖v‖W = (
∑

ι≤s

∑
i≤2 ‖vι

i‖2
1,Ωι)

1
2 ,

V0 = {v ∈ W | v = 0 on Γu and vn = 0 on Γo}, V = u0 + V0,

K = {v ∈ V | vk
n − vl

n ≤ 0 on
⋃

k,l Γkl
c }.

Assume that uk
0n − ul

0n = 0 on ∪k,lΓkl
c . Let

F ι
i ∈ L2(Ωι), P ι

i ∈ L2(Γι
τ ), cι

ijkl ∈ L∞(Ωι), u0 ∈ W.



Definition 1: A function u is a weak solution of problem P , if u ∈ K and

a(u, v − u) ≥ L(v − u) ∀v ∈ K, (5)

where

a(u, w) =
∑s

ι=1

∫
Ωι cι

ijkleij(uι)ekl(wι) dx, L(w) =
∑s

ι=1(
∫

Ωι F ι
i w

ι
i dx +

∫
Γι

τ
P ι

i w
ι
i ds).

Remark 2: The problem (5) is equivalent problem to find u ∈ K such that

L(u) = min
v∈K

L(v) (6)

where L(v) is quadratic functional defined by

L(v) =
1
2

a(v, v)− L(v). (7)

2. Finite element approximation
Let the domain Ω =

⋃s
ι=1 Ωι be approximated by Ωh =

⋃s
ι=1 Ωι

h with polygonal bound-
ary ∂Ωh = Γuh ∪ Γτh ∪ Γch ∪ Γoh, where Γuh, Γτh, Γch, Γoh are piecewise linear. Let
Ωh =

⋃s
ι=1 Ωι

h be triangulated, let qi be nodes of used triangulation. Let T ι
h , ι = 1, ..., s,

denote triangulations of polygonal domains Ωι
h, ι = 1, ..., s, and Th = {T ι

h , ι = 1, ..., s}.
We assume that T ι

h , ι = 1, ..., s, are consistent with the respective decompositions of the
boundaries ∂Ωι

h, ι = 1, ..., s and let the nodes lie on Γkl
c belonging to the triangulations

corresponding to the neighbouring subdomains Ωk and Ωl being in a mutual contact. The
triangulation Th is said to be regular, if all T ι

h , ι = 1, ..., s, are regular, h is the maximal
side of the triangulation. For every node qi of the triangulation Th on Γkl

c and Γo we define
the set of indeces N kl

i = {j ∈ {1, ..., r} | qi ∈ Γkl
cj} and Ni = {j ∈ {1, ..., r′} | qi ∈ Γoj},

where Γkl
c =

⋃r
j=1 Γkl

cj, Γo =
⋃r′

j=1 Γoj, Γkl
cj, Γoj denote segments on Γkl

c , Γo and r, r′ the
number of segments on Γkl

c and Γo, respectively.

Let us define a finite dimensional space Vh by

Vh = {vh | vh ∈ [C(Ω1)]2 × · · · × [C(Ωs)]2, vh|Thi
∈ [P1(Thi)]2,∀Thi ∈ Th;

vhn(qi) = 0, qi ∈ Γo; vh(qi) = u0(qi), qi ∈ Γu}
and a finite dimensional set of admissible displacements

Kh = {vh|vh ∈ Vh, (vk
hn − vl

hn)(qi) ≤ 0, qi ∈ Γkl
c }.

Definition 3: Function uh ∈ Kh is a solution of the problem Ph if

a(uh, vh − uh) ≥ L(vh − uh) ∀vh ∈ Kh. (8)

Note that in a general case Kh 6⊂ K.
The next theorem gives the connection between the problem P and the problem Ph if

h → 0+ under the assumption that the solution of the problem is sufficiently smooth.

Theorem 4: Let ∂Ω and its parts Γu, Γτ , Γo, Γc be piecewise polygonal, Γkl
c =

⋃r
j=1 Γkl

cj.
Let the solution of problem P u ∈ K ∩ [H2(Ω)]2, τij(uι) ∈ H1(Ωι), i, j = 1, 2 and
ι = 1, . . . , s, τ kl

n (u) ∈ L∞(Γkl
c ), uk

n,ul
n ∈ H2(Γkl

c ), k, l = 1, . . . , s and j = 1, . . . , r. Let
Kh ⊂ K. Let changes uk

n − ul
n < 0 → uk

n − ul
n = 0 and uk

t − ul
t = 0 → uk

t − ul
t 6= 0 occur

at only finitely many points of
⋃

k,l Γkl
c . Then for the semi-coercive case

|u− uh| = O(h), where |w| = (
s∑

ι=1

∫

Ωι
h

eij(w)eij(w) dx)
1
2 (9)

and for the coercive case
‖u− uh‖W = O(h). (10)

For the proof see [1].



Now we solve the problem Ph. If we do not consider the constraints on Γo and Γu, we
may write for vh ∈ Vh,

vh = (v1
h, v

2
h, . . . , v

s
h), vl

h = (vl
h1, v

l
h2), 1 ≤ l ≤ s,

vl
hi(x) =

M(l)∑
j=1

vl
i(q

l
j)ϕ

l
j(x) =

M(l)∑
j=1

xl
ijϕ

l
j(x) , i = 1, 2; l = 1, . . . , s, (11)

where ql
j are the nodes of the triangulation, xl

ij the degrees of freedom, ϕl
j(x) the basis

functions on Vh such, that

ϕl
i(q

l
j) = δij i, j = 1, . . . , M(l), l = 1, . . . , s, (12)

and M(l) is the number of nodes in the l-th body.
In regard to (11), (12), the constraints on Γ0 and Γu always bind degrees of freedom xl

ij

which belong to one node of the triangulation. The constraints on Γc = ∪Γkl
c express the

relation between the displacements uk
h and ul

h of the two nodes, which form the contact
pair, and each of them belongs to different body (1 ≤ k < l ≤ s) of the model. Therefore,
one constraint binds two pairs of degrees of freedom. For simplicity’s sake we denote the
nodes in a contact pair by the same symbol.

All constraints can be written as

xi1 = u01(qi) qi ∈ Γu,
xi2 = u02(qi) qi ∈ Γu,

xi1n1(qi) + xi2n2(qi) = 0 qi ∈ Γ0,
xk

i1n1(qi) + xk
i2n2(qi)− xl

i1n1(qi)− xl
i2n2(qi) ≤ 0 qi ∈ Γc,

(13)

where n(qi) = (n1(qi), n2(qi)) denote the outward unit normal to the boundary in node qi.
The conditions on Γu will be satisfied during the assembling of the stiffness matrix

and the right hand side vector, i.e. during the assembling of the functional L. The
corresponding degrees of freedom are constant, i.e. they are not dependent. In the
conditions on Γo one parameter of xi1, xi2 can be also expressed by the second one.

For these reasons we may consider only the conditions on Γc in what follows. These
can be written in a matrix form as

Ax ≤ 0, A is of the type M ×N ,
M is the number of constraints,
N is the number of degrees of freedom in the whole model.

We will form L on particular triangles and edges of the triangulation. Let us introduce
the vector 3× 1, eij, 1 ≤ i ≤ j ≤ 2, by the relations

eii = eii

e12 = 2e12,
(14)

and f(x) = L(xlϕl) = L(vh), x ∈ IRN .
It holds that

2∑

i,j,k,l=1

cijklekleij =
2∑

i≤j k≤l i,j,k,l=1

cijklekleij,

which can be written in the matrix form as eT De, where the matrix D is 3×3, symmetric.
In regard to the choice of Vh, we seek the vector uh = (uh1, uh2) in the form of linear

polynomial on every triangle Tk and edge Bl of the triangulation. Similarly we will obtain
fk(xk) on a given element in the form fk(x) = 1

2x
T
k Ckxk−xT

k dk, Ck is 6× 6, xk = (6× 1),
dk = (6×1). We will also obtain the contributions from the edges on Γτ , xT

l hl, xl = (4×1),
hl = (4× 1) which will be added to the linear term of L.



Then, we eliminate the contingent degrees of freedom on Γu or Γ0. During the as-
sembling of L in the whole model, we follow the global numbering of nodes and the
numbering of degrees of freedom (i.e. the numbering of the variables in the functional).

The problem Ph then leads to the quadratic programming problem Pd:

f(x) = 1
2x

T Cx− xT d → min

with constraints Ax ≤ 0.

Remark 5: The global stiffness matrix C is of the type N ×N , block diagonal, every
block is sparse, symmetric, positive semidefinite matrix and corresponds to just one body
in the model. In the coercive case C is positive definite. The constraint matrix A is of
the type M ×N , M ¿ N ; we assume its rows to be linearly independent.

3. Numerical experiments
The paper presents two models. The first one represents the loaded total endoprothesis

of the knee joint in the sagital cross-section and the second model in frontal cross-section.
Both models are presented in Fig. 1.
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Fig. 1. The model of the artificial knee replacement, (a) the sagital cross-section,
(b) the frontal cross-section

The physical parameters are as follows: bone: Young’s modulus E = 1.71 × 1010

[Pa], Poisson’s ratio ν = 0.25, (1) Ti6Al4V: E = 1.15× 1011 [Pa], ν = 0.3, (2) chirulen:
E = 3.4×108 [Pa], ν = 0.4, (3) the zircon ceramics ZrO2 : E = 4.0×1011 [Pa], ν = 0.22.
The femur is loaded between points 5 and 6 by a loading 0.215× 107[Pa], the tibia and
the fibula are fixed between points 1 and 2 (the tibia) and between 3 and 4 (the fibula)



and the unilateral contact boundary is between points 7 and 8 as well as between 9 and
10. The loadings evoked by muscular forces were neglected. In Fig. 2 the deformations
and in Fig. 3 the vertical stress tensor components are presented.
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Fig. 2. The deformations (enlarging factor is 10), (a) the sagital cross-section,
(b) the frontal cross-section
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[3] Nečas, J., Hlaváček, I.: Mathematical Theory of Elastic and Elasto-plastic Bodies:
An Introduction. Elsevier, Amsterdam 1981.

[4] http://www.mathworks.com



0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

−1.50040e+07

−1.28076e+07

−1.06112e+07

−8.41487e+06

−6.21850e+06

−4.02213e+06

−1.82576e+06

3.70616e+05

2.56699e+06

τ
y

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

−6.57905e+06

−5.30872e+06

−4.03839e+06

−2.76806e+06

−1.49773e+06

−2.27396e+05

1.04293e+06

2.31327e+06

3.58360e+06

τ
y

(a) (b)

Fig. 3. The vertical stress tensor components, (a) the sagital cross-section,
(b) the frontal cross-section
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