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Abstract:

The stability of discrete control system can be studied using Lyapunov technique.

There is possible to develop a set of the stable control systems in case of given

convex Lyapunov function. Let n
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 be a H-tuple of new states. It is easy to

prove that any vector n
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 will also produce the stable control with the same Lyapunov function.

When a new heuristic controller will produce )(xfx
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 into given convex hull CH is a way how to construct a stabile heuristic control

system. The function library was realized in the Matlab environment to

demonstrate the discrete dynamic.

Discrete Dynamic System
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 respectively, where k∈N0 is

the index of discrete time. The zero vector 0
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=x  is called a stationary point.

The aim of this paper is to build up a set of global asymptotically stable systems with the

unique stationary point 0
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Lyapunov Theorem for Discrete Systems

Let RR →
n

:L  be a continuous function satisfying:
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 is called Lyapunov function of the discrete dynamic system )(*
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stationary point 0
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=x  is globally asymptotically stable. It is not necessary to use smooth

Lyapunov function )(xL
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 for the discrete system investigation. But the convexity of Lyapunov

function )(xL
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 is an advantage in some applications.

Compromise Discrete Systems

Let H∈N be the number of discrete dynamic systems. Let )(,),(
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dynamic descriptions. Let )(xL
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 be the common convex Lyapunov function for the systems
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. Then any discrete dynamic system described by the rule
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state of global asymptotically stable discrete dynamic system. It is rather typical to use a non-

linear heuristics feedback in the real control system. The neural, fuzzy and constrained

controllers are good examples of this habit.
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heuristics, which is not necessary stable. When 
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Matlab Realization

The Matlab environment was used for the realization of the discrete non-linear heuristic but

stable system based on the function library consisting of

L=Lyapunov(x)

X=Dynamics(x)

xnew=Heuristics(x)

xnew=Projection(x)

Here x is a row vector (1 × n) of the current state, xnew is a row vector (1 × n) of the new state

and X is a matrix (H × n)  composed of H-tuple of new states. The set of four functions

enables to design the common convex Lyapunov function, H-tuple of stable discrete dynamic

systems, any dynamic system with heuristic controller and the final stable discrete system

with projection of 
h
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 into CH.

Numeric Example
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There are four global asymptotically stable systems
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Conclusions

There is a way how to convert any unstable discrete system to the stable one. Lyapunov

function, the set of stable systems and projection into the convex hull are main parts of the

solution. The testing example was built to demonstrate the implementation details. The library

of Matlab functions was realized as a tool for the computer simulation.
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