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Abstract

In practice, it is necessary to calculate the point-spread function and the optical transfer function

of optical systems in order to evaluate the quality of these systems. The two-dimensional integrals

are often calculated over the region, which cannot be analytically expressed, and the integrand is a

complicated function. For mentioned reasons the integrals cannot be evaluated explicitly and

suitable techniques for numerical integration must be used. A large number of such calculations

must be carried out during the optimisation of parameters of the optical system. The computing

time is relatively long in case of evaluation of a large number of integrals. Our work describes a

simple method for numerical calculation of diffraction integrals, which offers a suitable accuracy

and reduces substantially the computing time.

1. Introduction

Two basic approaches are used for evaluation of the image quality of optical systems. The first is

based on the theory of geometrical optics [1,2,3] and the latter on the theory of wave optics

[1,2,3]. A basic characteristic of the optical system is the point-spread function [1,2,3], which

describes the distribution of the intensity of light in the image of a point source. It is very well

known that the imaging quality depends on the aberrations of the optical system [1,2,3] and

subsequently the point-spread function also depends on these aberrations. Moreover, it will also

be affected by the shape of the pupil of the optical system. The point-spread function is expressed

by the diffraction integral over the area of the optical system and the integrand depends on the

aberrations and the transmissivity of the optical system. Since the two-dimensional diffraction

integrals are evaluated over the region, which in most cases cannot be expressed analytically, and

the integrand is often a very complicated function, they cannot be calculated explicitly. It is

necessary to use some suitable technique for numerical integration [4,5]. It is required to know

the point-spread functions across the whole image plane of the optical system in order to obtain a

good view of the quality of the optical system. For common optical systems, e.g. camera lenses,

this represents a calculation of several thousands of two-dimensional integrals. Such calculations

are relatively time consuming. As we can see from the description of the problem it is desirable to

use such methods of numerical integration, which give us in the shortest time sufficiently

accurate results. The presented work describes such method for numerical calculation, which was

implemented in Matlab.

2. Diffraction integral

Consider a scalar wave field, which is described by the scalar function V(M,t). It is known from

the theory of  electromagnetic field [1,2,3] that the function V(M,t) satisfies the wave equation
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where M is some point of the wave field, t denotes time, v is the velocity of the propagation of

waves and ∇
2
 is the Laplace operator [5]. Suppose now the solution of the wave equation has the

form
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where  ω = 2πν, and ν is the frequency. Function U(M) is then a solution of Helmholtz equation.

Solving Helmholtz equation by Green’s function method [1, 4] we obtain integral
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where r is the distance between points M and P, cos(n,r) is the cosine of the angle between the

normal n and the direction of r. From this relation one can determine the field amplitude U(P) in

an arbitrary point P of the area limited by the surface S, if the field amplitude U(M) is known on

the surface S. We will now calculate the integral (2) for the optical system with the aberrations.

Using Fraunhofer approximation the equation (2) has the form [1]
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where K is constant. We can determine the amplitude of the wave field in the image plane of the

optical system with a finite numerical aperture using Eq.(3). From the mentioned equation it is

clear that field U(s,t) is proportional to the Fourier transform of function F(p,q). In practice, it is

most important to know the field U(0,0). For common optical systems with a small numerical

aperture and uniformly transmissive pupil, e.g. camera lenses, the previous equation simplifies to

the form
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where W(x,y) is the wavefront aberration of the optical system, λo is the wavelength of light in the

vacuum [1].

3. Numerical calculation of diffraction integral

As described above, we are interested in calculation of diffraction integrals, which have the

following form
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where
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These integrals can be calculated with very well known methods for numerical integration [5],

such as for example the rectangular rule, trapezoidal rule, Simpson’s method, Newton-Cotes

method, Gauss quadrature, etc. However, these methods need to evaluate functions

)],(2sin[ yxfπ and )],(2cos[ yxfπ  at many grid points. We can modify the rectangular rule in

order to eliminate such calculations.

We make an equidistant grid on the two-dimensional region of integration and for the centre of

every cell with indices (i,j), where i = 1,2,...,Nx and j = 1,2,...,Ny, we calculate the value of the

function f(xi,yj) = f(i,j). From obtained values we take only the fractional part g(i,j). If this

fractional part is negative, then we add one to the value g(i,j), i.e.

),(),( jigjig =    for  g > 0,  1),(),( += jigjig for  g < 0. (6)

The described transformation of the function g(i,j) is given by the periodicity of trigonometric

functions sin f(x,y) and cos f(x,y), i.e.
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where k = 0, 1, 2, ... The transformed values g(i,j) are located in the range <0,1>. We will round

the values g(i,j), e.g. with the accuracy δg = 0.025. The described integrals are given by
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where d = 1/(2δg), Nk
 

 is the number of rounded values g(i,j), which are equal to k/d, N = NxNy is

the overall number of working cells, and A is the area of integration. The accuracy δg = 0.025 was

not chosen arbitrarily, but it corresponds to the change of the wave aberration δW=λ/40. Such

small change of the wave aberration has practically no influence on the point-spread function and

even from the experimental point of view it is hardly to measure. The described technique can be

generalized for an arbitrary chosen value δg. We can also see that it is not necessary to evaluate

functions sine and cosine to calculate the integrals. This fact speeds up the calculation, which is

very important in practice. Further improving of the computing time and accuracy of the proposed

method can be obtained by calculating values f(i,j) on a coarse grid first and then interpolating the

values on a dense grid.

As an example of the mentioned technique, we show the calculation of such integrals. The

wavefront aberration W can be expressed as
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where W20 is the coefficient of defocusing, and W31 is the coefficient of the third order coma. The
integrals take the form
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We compared the accuracy of the presented technique with the method for numerical integration
in Matlab. Let Nx = Ny = 30, then the calculated integrals (9) are shown in table 1 for different
values of coefficients W20 and W31. S, C are the values calculated with the described method,
S2,C2 are the values calculated with the quad2 function in Matlab. We can see that the accuracy is
sufficient even in case of a coarse approximation. The computing time of the method was several
times shorter than for the method quad2. If we need a better accuracy then the number of working
cells must be larger.

Table 1

Method W20 = 0.1
W31 = 0.25

W20 = 0.25
W31 = 0.25

W20 = 0.25
W31 = 0.5

S 0.5315 0.4345 0.2963
C 0.3838 0.0971 0.1129
S2 0.5544 0.4614 0.3044
C2 0.3981 0.0955 0.0983

4. Conclusion

A simple technique for calculation of this diffraction integral was proposed. The technique does
not evaluate values of the integrand as necessary in case of known methods of numerical
integration. A numerical calculation of the integral is therefore substantially faster than the
common methods and the accuracy is sufficient for practice. The proposed technique can be also
used for calculation of the optical transfer function of the optical system. The method can be
simply generalized and one can obtain a predefined accuracy. The technique can be applied both
in optics and in other branches of physics and engineering.
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