
Michal Blaho

blaho@humusoft.sk

www.humusoft.cz

info@humusoft.cz

www.mathworks.com

Škálovanie algoritmov a simulácií
pomocou paralelných výpočtov

11.9.2025 Technical Computing Camp 2025

http://www.humusoft.cz/
http://www.mathworks.com/

2

Cornell Bioacoustics Scientists Develop a High-

Performance Computing Platform for Analyzing

Big Data

Research Engineers Advance Control System

Design of the International Linear Collider

“High-performance computing with MATLAB

enables us to process previously unanalyzed big

data. We translate what we learn into an

understanding of how human activities affect the

health of ecosystems to inform responsible

decisions about what humans do in the ocean and

on land.”

"Using Parallel Computing Toolbox, we deployed

our Simulink model on a large group cluster for

distributed execution. We could simultaneously run

simulations providing coverage for hundreds of

scenarios. As a result, we achieved a linear

speedup in the turnaround time for this task.

MathWorks tools have enabled us to accomplish

work that was once impossible."

https://www.mathworks.com/company/user_stories/cornell-bioacoustics-scientists-develop-a-high-performance-computing-platform-for-analyzing-big-data.html
https://www.mathworks.com/company/user_stories/research-engineers-advance-control-system-design-of-the-international-linear-collider.html

Before going parallel, optimize your code

• Use the Profiler to find the code that runs slowest and determine possible

performance improvements

3

Use vectorization (matrix and vector operations)

instead of for-loops

Before going parallel, optimize your code

• Use the Code Analyzer to automatically check your code for coding (and

performance) problems

4

Elapsed time is 0.075824 seconds.

Elapsed time is 0.013109 seconds.

Preallocate the maximum amount of space required for the array

instead of letting MATLAB repeatedly reallocate memory for the

growing array

Optimize your code with efficient programming practices

5

Try using functions instead of scripts. Functions are generally faster

Pre-allocate memory instead of letting arrays be resized dynamically

Create a new variable rather than assigning data of a different type to an existing variable

Vectorize – Use matrix and vector operations instead of for-loops

Avoid printing too much data on the screen, reuse existing graphics handles

Place independent operations outside loops to avoid redundant computations

Techniques to improve performance

https://www.mathworks.com/help/matlab/matlab_prog/techniques-for-improving-performance.html

MATLAB has built-in multithreading

6

Multi-core CPU

MATLAB

MATLAB multicore

https://www.mathworks.com/discovery/matlab-multicore.html

7

Multi-core CPU

Parallel Computing Toolbox

MATLAB

MATLAB multicore

Scale further with parallel computing

https://www.mathworks.com/discovery/matlab-multicore.html

Automatic parallel support (MATLAB)

8

Statistics and Machine Learning

Computer Vision

Additional automatic parallel support

Image Processing

Signal Processing and Communications

Deep Learning

Optimization and Global Optimization

http://www.mathworks.com/products/parallel-computing/parallel-support.html

Run multiple classifiers at once with automatic parallel support

9

Run independent iterations in parallel using parfor

10

a = zeros(5, 1);

b = pi;

for i = 1:5

a(i) = i + b;

end

disp(a)

a = zeros(5, 1);

b = pi;

parfor i = 1:5

a(i) = i + b;

end

disp(a)

MATLAB

Workers

Parallelize for loops with independent iterations

11

a = zeros(10, 1);

b = pi;

parfor i = 1:10

a(i) = i + b;

end

disp(a)

MATLAB

Workers

Example: Parameter Sweep with parfor

• Task

– parameter sweep on a system

– Van der Pol oscillator

– find out the mean period

• Solution

– run the parameter sweep in serial

– start a pool of workers

– run the parameter sweep in an

interactive parallel pool

– compare results

12

Execute functions in parallel asynchronously using parfeval

13

 Asynchronous execution on parallel workers

 Useful for “needle in a haystack” problems

MATLAB

Workers

Outputs

fetchNext

for idx = 1:10

f(idx) = parfeval(@monteCarloSim,1,idx);

end

for idx = 1:10

[completedIdx, value] = fetchNext(f);

if value>0.95

f.cancel

break

else

mcs(completedIdx) = value;

end

end

Big Data Workflows

14

ACCESS DATA

More data and collections

of files than fit in memory

DEVELOP & PROTOTYPE ON THE DESKTOP

Adapt traditional processing tools or learn

new tools to work with Big Data

SCALE PROBLEM SIZE

To traditional clusters and Big

Data systems like Hadoop

tall arrays

15

 Data type designed for data that doesn’t fit into memory

 Lots of observations (hence “tall”)

 Looks like a normal MATLAB array

– Supports numeric types, tables, datetimes, strings, etc.

– Supports several hundred functions for basic math, stats, indexing, etc.

– Statistics and Machine Learning Toolbox support

(clustering, classification, etc.)

Working with tall arrays

https://www.mathworks.com/help/matlab/tall-arrays.html

tall arrays

16

tall array
Single

Machine

Memory

 Automatically breaks data up into

small “chunks” that fit in memory

 Tall arrays scan through the

dataset one “chunk” at a time

 Processing code for tall arrays is

the same as ordinary arrays

Single

Machine

MemoryProcess

tall arrays

17

tall array

Cluster of

Machines

Memory

Single

Machine

Memory

 With Parallel Computing Toolbox,

process several “chunks” at once

 Can scale up to clusters with

MATLAB Parallel Server

 Support for Spark and Hadoop

Single

Machine

MemoryProcess

Single

Machine

MemoryProcess

Single

Machine

MemoryProcess

Single

Machine

MemoryProcess

Single

Machine

MemoryProcess

Single

Machine

MemoryProcess

Scale preprocessing with tall arrays

18

One file One hundred files

Example: Predict Cost of Taxi Ride in New York City

• Task

– analyze data from .csv files

– calculate average trip duration

– predict taxi fare

• Solution

– create datastore

– create a tall array

– plot fare amount vs trip distance

– fit predictive model

– predict and validate

19

Leverage NVIDIA GPUs without learning CUDA

20

MATLAB client

or worker

GPU cores

Device Memory

Accelerating with NVIDIA GPUs

21

10x speedup
deep learning training

77x speedup
wave equation solving

12x speedup
using Black-Scholes model

14x speedup
template matching routine

10x speedup
K-means clustering algorithm

44x speedup
simulating the movement of celestial

objects

NVIDIA Titan V GPU, Intel® Core™ i7-8700T Processor (12MB Cache, 2.40GHz)

Leverage your GPU to accelerate your MATLAB code

22

 Ideal Problems

– massively parallel and/or

vectorized operations

– computationally intensive

 1000+ GPU-supported

functions

 Use gpuArray and

gather to transfer data

between CPU and GPU

MATLAB GPU Computing

https://www.mathworks.com/discovery/matlab-gpu.html

Example: Solving Equation on the GPU

• Task

– solve a 2nd order wave equation

– 2nd order central finite difference

– Chebyshev spectral method (FFT)

• Solution

– set up parameters

– run on the CPU

– run on the GPU

– compute speed up of solution

23

Automatic parallel support (Simulink)

24

Simulink Control Design

Frequency response estimation

Simulink/Embedded Coder

Generating and building code

Simulink Design Optimization

Response optimization, sensitivity

analysis, parameter estimation

Communication Systems Toolbox

GPU-based System objects for

Simulation Acceleration

Learn more here

http://www.mathworks.com/products/parallel-computing/parallel-support.html

Run massive simulations in parallel with just a few clicks

25

Specify variations on multiple block parameters or variables

 Setup multiple simulations through

a graphical user interface

 Specify variations on multiple block

parameters or variables

 Integration with Simulation Manager

 Integration with parallel computing

Learn more here

https://www.mathworks.com/help/simulink/ug/configure-and-run-simulations-with-multiple-simulations-ui.html

Run massive simulations in parallel with just a few clicks

26

Automating Simulations with sim

27

 single or multiple simulations can be run

using the sim command

 control how the simulations are performed

 UseFastRestart – skipping the compilation

 ShowProgress – showing simulation progress

 ShowSimulationManager – interactive

monitoring

Run multiple Simulink simulations in parallel with parsim

28

 Run independent Simulink

simulations in parallel using
the parsim function

Workers

Time Time

Example: Parallel Simulation with parsim

• Task

– solve a Spring-Mass System

– set up the SimulationInput object

– call parsim

• Solution

– set up the simulation

– set the variables that are changing

– simulate in parallel

– unpack output

– visualize parameter sweep

29

Access remote cluster resources

30

GPU

Multi-core CPU

MATLAB Parallel Server

 Prototype and develop on the desktop

 Integrate with your infrastructure

 Access directly through MATLAB

MATLAB

Parallel Computing Toolbox

GPU

Multi-core CPU

Run a parallel pool from specified profile

31

On local machine

 Start parallel pool of local workers

 Start parallel pool of thread workers

 Reduced memory usage, faster

scheduling, lower data transfer costs

 Thread-based environments support

only a subset of the functions available for

process workers

On cluster

 Start parallel pool using cluster

object

Submit MATLAB jobs to the cluster

32

>> job = batch(myCluster,"myScript","Pool",1000);

MATLAB

Parallel Computing Toolbox

parfor

MATLAB Parallel Server

on HPC Cluster

Submit Simulink jobs to the cluster

33

>> job = batchsim(myCluster,in,"Pool",1000);

MATLAB

Parallel Computing Toolbox

parsim

MATLAB Parallel Server

on HPC Cluster

HeavyHorse - High-Performance Computing Workstations

• Hardware

– CPU AMD Ryzen, Threadripper, EPYC

– up to 384 cores, 768 threads

– 32 ~ 768 GB RAM (up to 3072 GB RAM)

– GPU – NVIDIA RTX Ada / RTX PRO Blackwell

– 1000 GB ~ 4000 GB M.2 NVMe SSD hard drive

– PC Case: Mid Tower/5U rack and Mid Tower

• Applications

– High-Performance Computing

– Finite Element Method

– Processing of large data

34

HPC / Big Data v ČR a SR

35

• Používatelia – akademická obec

– CWL Univerzity

– Akadémie Vied

• HPC Infraštruktúra

– CZ: e-INFRA

– SK: NSCC & SAV

Example: Offloading to a cluster

• Task

– perform parameter sweep

– offload computation to HPC cluster

– call batch

• Solution

– create cluster object

– runs a batch job on the cluster

– wait for it to finish

– fetch the outputs

– visualize parameter sweep

36

Školenia - Paralelné výpočty v prostredí MATLAB

• 3.12.2025 – online & prezenčne

• Náplň školenia

– architektúra a konfigurácia výpočtového

klastra

– distribuované a dávkové úlohy

– paralelné cykly

– dátovo paralelné úlohy a distribuované

polia

– GPU výpočty

37

Ďakujem za pozornosť

