

AI models in MATLAB

Machine Learning

Deep Learning

Decision trees

3 ways how to create AI model in MATLAB

fitcauto / fitrauto

Interactive design using apps

Leverage pre-defined networks and pretrained networks

Deep Learning in MATLAB

- Create, train and deploy neural networks
 - variety of applications
 - pre-built networks
- Create networks in the graphical designer
 - design network easier and faster
- Find the optimal network using experiments
- Explain and visualize how networks work
- Interoperability with other environments

Create Deep Neural Networks in MATLAB

~100 layer types

Deep Network Designer

Prepared functions (low code)

Customizations

training using APP*

```
opts = trainingOptions('solver');
net = trainnet(data,layers,lossfcn,opts);
```

```
scores = minibatchpredict(net,newData);
label = scores2label(scores,classNames);
```

for most deep learning tasks

custom training loops
automatic differentiation
custom loss functions
add physical constraints

PINN networks, GANs, ...

- What is it used for?
 - modeling unknown dynamics
 - discovering equations
 - solving known equations

- A key strategy is to impose constraints based on physics principles to AI model
- How is physics knowledge represented?
 - governing equations
 - conservation laws and symmetries
 - boundary and initial conditions
 - domain-specific knowledge

example: simple pendulum

Туре	Given Information	Mathematical Formulation
Governing equations	Pendulum equation	$\ddot{ heta}=\ -\omega_0^2\sin heta$
Conservation Laws	Conservation of energy	$E=\;rac{1}{2}m\ell^2\dot{ heta}^2+mg\ell(1-\cos heta)$
Boundary / Initial Conditions	Initial angular position, velocity	$ heta\left(0 ight)= heta_{0},\dot{ heta}\left(0 ight)=\dot{ heta}_{0}$
Domain knowledge	Physical limits (e.g. maximum swing angle)	$ heta \leq heta_{max}$

How is physics knowledge integrated with machine learning?

Stage	Description
1. Defining Objective	Specify what needs to be modeled, including input-output relationships and any known physics.
2. Curating Training Data	Gather training data through experiments, measurements, or simulations. Preprocess raw data into a format suitable for analysis and modeling.
3. Building Model	Choose a machine learning algorithm or a deep learning architecture that best suits your data and task.
4. Defining Loss Function	Create a loss function that quantifies the model's performance in meeting its objectives, such as matching observed data or adhering to physical laws, during training.
5. Optimizing Model	Adjust the model parameters to minimize loss and increase predictive accuracy.
6. Making Predictions	Use the trained model to make predictions or simulate system behavior.

- Physics can be incorporated at various stages, but often informs:
 - model's structure (stage 3)
 - evaluation (stage 4)
- Soft enforcement:
 - add physics-based constraints in the loss function (stage 4)
 - during training, the model is penalized for violating constraints
 - once trained, its predictions may not strictly satisfy them
 - e.g. PINN's
- Hard enforcement:
 - design the model architecture (stage 3) so that physical constraints are always satisfied
 - e.g. constrained deep learning

Examples of PIML methods

* weak embedding of physical knowledge, e.g. physics-inspired architecture

Approach	Description
Neural Ordinary Differential Equation *	$\dot{x} = f(x, u)$, use a neural network to learn f directly from data
Neural State-Space *	$\dot{x}=f(x,u),y=g(x,u),$ use neural networks to learn f and g directly from data
Universal Differential Equation	combine known physics with machine-learned components
Hamiltonian Neural Networks	account for energy conservation
SINDy (Sparse Identification of Nonlinear Dynamics)	reveal the underlying mathematical relationships from data
Physics-Informed Neural Networks	combine governing equations (ODEs, PDEs) with data to find solutions that match both observed data and physical laws
Fourier Neural Operator *	learn a mapping from the space of input functions directly to the space of solution functions, enabling fast prediction for new scenarios
Graph Neural Networks *	operate directly on mesh or graph-based representations

Physics-Informed Neural Networks (PINNs)

- Neural networks that incorporate physical laws
 - physical laws described by differential equations in their loss functions
- Main purpose
 - guide the learning process toward solutions that are more consistent with the underlying physics
 - use the trained network as the solution of the differential equation

Physics-Informed Neural Networks: Loss Function

- Compute loss function L(σ) from three terms
 - $-L_{Data}(\sigma)$: known input-output data point from FEM solution
 - $-L_{Conds}(\sigma)$: input-output data points from initial and boundary conditions
 - $-L_{Physics}(\sigma)$: random input data with physical equation to force the physical constraints

Example: Partial Differential Equation

• Burger's equation:
$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} - \frac{0.01}{\pi} \frac{\partial^2 u}{\partial x^2} = 0$$

• Initial conditions:
$$u(x, 0) = -\sin(\pi x)$$

- Boundary conditions: u(-1, t) = 0u(1, t) = 0
- Solution space: $(t, x) \in (0, 1) \times (-1, 1)$

Data points from initial and boundary conditions are used for L_{Cond} evaluation

Example: FEM Results

• Data points computed by COMSOL Multiphysics used for L_{Data} evaluation

Example: Enforce the Physics

- Random data samples used for L_{Physiscs} evaluation
- Used to enforce the output of the network to fulfill the Burger's equation

Example: Live Script in MATLAB

Example: Results

- Solution computed by the trained network at the timestamps 0.2, 0.5, 0.8, 1 sec
- Comparison with the standard (non-PINN) network trained only on the FEM data

Example: Results

Zoom-in the result at t = 1 sec

Thank you for your attention!