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3 ways how to create AI model in MATLAB
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Programmatically

using scripts

and functions

fitcauto / fitrauto

Interactive design

using apps

Leverage 

pre-defined networks 

and pretrained networks



Deep Learning in MATLAB

• Create, train and deploy neural networks

– variety of applications

– pre-built networks

• Create networks in the graphical designer

– design network easier and faster

• Find the optimal network using experiments

• Explain and visualize how networks work

• Interoperability with other environments
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Create Deep Neural Networks in MATLAB

Deep Network Designer Prepared functions

(low code)

Customizations

custom training loops

automatic differentiation

custom loss functions

add physical constraints

...

PINN networks, GANs, ...
for most deep learning tasks

training

using

APP*

scores = minibatchpredict(net,newData);

label = scores2label(scores,classNames);

* image classification tasks

~100 layer types

layers = [imageInputLayer(inputSize)

convolution2dLayer(filterSize,numFilters)

reluLayer()

maxPooling2dLayer(poolSize)

fullyConnectedLayer(outputSize)

softmaxLayer()];

opts = trainingOptions('solver');

net = trainnet(data,layers,lossfcn,opts);



Physics-Informed Machine Learning

• What is it used for?

– modeling unknown dynamics

– discovering equations

– solving known equations

5 https://blogs.mathworks.com/deep-learning/2025/06/23/what-is-physics-informed-machine-learning/
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Physics-Informed Machine Learning

• A key strategy is to impose constraints based on physics principles to AI model

• How is physics knowledge represented?

– governing equations 

– conservation laws and symmetries

– boundary and initial conditions

– domain-specific knowledge
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example: simple pendulum



Physics-Informed Machine Learning

• How is physics knowledge integrated with machine learning?
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Stage Description

1. Defining Objective
Specify what needs to be modeled, including input-output relationships and any known 

physics.

2. Curating Training Data
Gather training data through experiments, measurements, or simulations. Preprocess raw 

data into a format suitable for analysis and modeling.

3. Building Model
Choose a machine learning algorithm or a deep learning architecture that best suits your data 

and task.

4. Defining Loss Function
Create a loss function that quantifies the model’s performance in meeting its objectives, such 

as matching observed data or adhering to physical laws, during training.

5. Optimizing Model
Adjust the model parameters to minimize loss and increase predictive accuracy.

6. Making Predictions
Use the trained model to make predictions or simulate system behavior.



Physics-Informed Machine Learning

• Physics can be incorporated at various stages, but often informs:

– model’s structure (stage 3)

– evaluation (stage 4)

• Soft enforcement: 

– add physics-based constraints in the loss function (stage 4)

– during training, the model is penalized for violating constraints

– once trained, its predictions may not strictly satisfy them

– e.g. PINN’s

• Hard enforcement: 

– design the model architecture (stage 3) so that physical constraints are always satisfied

– e.g. constrained deep learning
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Examples of PIML methods

9 https://blogs.mathworks.com/deep-learning/2025/07/14/physics-informed-machine-learning-methods-and-implementation/

Approach Description

Neural Ordinary Differential Equation *  𝑥 = 𝑓(𝑥, 𝑢), use a neural network to learn 𝑓 directly from data

Neural State-Space *
 𝑥 = 𝑓(𝑥, 𝑢), 𝑦 = 𝑔 𝑥, 𝑢 , use neural networks to learn 𝑓 and 𝑔 directly 

from data

Universal Differential Equation combine known physics with machine-learned components

Hamiltonian Neural Networks account for energy conservation

SINDy (Sparse Identification of Nonlinear Dynamics) reveal the underlying mathematical relationships from data

Physics-Informed Neural Networks
combine governing equations (ODEs, PDEs) with data to find solutions 

that match both observed data and physical laws

Fourier Neural Operator *
learn a mapping from the space of input functions directly to the space of 

solution functions, enabling fast prediction for new scenarios

Graph Neural Networks * operate directly on mesh or graph-based representations

* weak embedding of physical knowledge,

e.g. physics-inspired architecture

https://blogs.mathworks.com/deep-learning/2025/07/14/physics-informed-machine-learning-methods-and-implementation/


Physics-Informed Neural Networks (PINNs)

• Neural networks that incorporate physical laws

– physical laws described by differential equations in their loss functions

• Main purpose

– guide the learning process toward solutions that are more consistent with the underlying physics

– use the trained network as the solution of the differential equation

10 https://www.mathworks.com/discovery/physics-informed-neural-networks.html

https://www.mathworks.com/discovery/physics-informed-neural-networks.html


Physics-Informed Neural Networks: Loss Function

• Compute loss function L() from three terms

– LData(): known input-output data point from FEM solution

– LConds(): input-output data points from initial and boundary conditions

– LPhysics(): random input data with physical equation to force the physical constraints
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Pre-computed FEM data

or measurement data

Boundary/Initial Conditions

Differential Equation



Example: Partial Differential Equation

• Burger's equation: 

• Initial conditions:

• Boundary conditions:

• Solution space: 

• Data points from initial and boundary conditions are used for LCond evaluation
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Example: FEM Results

• Data points computed by COMSOL Multiphysics used for LData evaluation
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Example: Enforce the Physics

• Random data samples used for LPhysiscs evaluation

• Used to enforce the output of the network to fulfill the Burger's equation
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Example: Live Script in MATLAB
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Example: Results

• Solution computed by the trained network at the timestamps 0.2, 0.5, 0.8, 1 sec

• Comparison with the standard (non-PINN) network trained only on the FEM data
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Example: Results

• Zoom-in the result at t = 1 sec
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Thank you for your attention!
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