A HUMUSOFT”
Al models in MATLAB

Machine Learning Deep Learning

FEATURS LEARNING CLASSIFICATION

SVM Clustering FC

Forget Update Output
Ct—1 L e

L &b AR 0 @" jo g}%

Decision trees

= LSTM .

3 ways how to create Al model In

inputSize = 12;
numHiddenUnits = 100;
numClasses = 9;

layers = [
sequenceInputlLayer(inputSize)
bilstmLayer(numHiddenUnits, 'OutputMode’, "last’)
fullyConnectedLayer(numClasses)
softmaxLayer
classificationLayer]

fitcauto / fitrauto

Programmatically
using scripts
and functions

- ot

| [e—_—

| oo

prmGnspLTyee

- Compoution o ol Commcied

ROG
RuSE (st 3236

7 sataes

12 RS st 47571

st cnange: mrscons Lngar 77 stes
st
< Lnoar

sais

RSE (Vatgaton) 30354
Lostchonge- StpuieLnear 717 featres

15 Tee RMSE(akston) 35321
Lost chn - "

Predictions: model 1.1

Hodsls
Sortoy: (woselNumoer v | 1)) (@)

Accuracy (Vaidaton: 957%
features

2

4 15 5 55 5
SepalLength

Dsta ot fshorablo_Observatons: 150 Seo.24KB _Prodiiors 4 _ Rosponse. Spedes _ Rosponse Ciasses: 3

© Mogal precictons.
o comt

X icorrect

Predictors

Interactive design

using apps

Logona

o o

— e

£ THUMUSOFT

w Image Networks (Pretrained)

]

1 |
0ooo 0

0o 0

0 ooon 0o 0
[m] [m]

] 0
0Oono

0o 0 0
E [m] D_D] 0
SqueezeNet GooglLeNet ResNet-50
Show more
W Sequence Networks

o i

m |

m |

m |

m |

m |

m |

Sequence-to-Label Sequence-to-Sequ...

Leverage
pre-defined networks
and pretrained networks

.
Deep Learning in MATLAB

Create, train and deploy neural networks

— variety of applications
— pre-built networks

Create networks in the graphical designer

— design network easier and faster

Explain and visualize how networks work

Interoperability with other environments

Find the optimal network using experiments

convaluton e
nnnnnnnnnnnnnn
convoluon L ayes
sroupedCammollon?ed e

aaaaaaaaaaaaaaaaaaaaa

nnnnnnnnnnnnnnnnnnnnnnn

}317"7
£ THUMUSOFT

wwwwwwww

v Pretrained Networks

HEERAERRBRERRAR
U R

Freprocess Data Impart or Build Train Network Tune Metwork Visualize and Verify Export Metwork
Neh Jork Re ults 5

Create Deep Neural Networks in MA

~100 layer types

—1 1 1 1

— 1 1 r

Deep Network Designer

‘‘‘‘‘‘

wwwww

training
using
APP*

scores

label = scores2label(scores,classNames);

opts
net = trainnet(data,layers,lossfcn,opts);

Prepared functions

&

£ THUMUSOFT

LAB

Customizations

(low code)

layers = |

trainingOptions('solver');

minibatchpredict(net,newData);

for most deep learning tasks

imagelInputLayer(inputSize)
convolution2dLayer(filterSize,numFilters)
reluLayer()

maxPooling2dLayer(poolSize)
fullyConnectedLayer(outputSize)
softmaxLayer()];

custom training loops
automatic differentiation
custom loss functions

add physical constraints

PINN networks, GANSs, ...

P
I 7

£ HUMUSOFT

Physics-Informed Machine Learning

« What is it used for?

— modeling unknown dynamics
— discovering equations

— solving known equations

/‘\

Physics-Informed
Machine Learning
Hybrid physics & data

WHITE BOX BLACK BOX

5 https://blogs.mathworks.com/deep-learning/2025/06/23/what-is-physics-informed-machine-learning/

https://blogs.mathworks.com/deep-learning/2025/06/23/what-is-physics-informed-machine-learning/

Physics-Informed Machine Learning

&

£ THUMUSOFT

« A key strategy Is to impose constraints based on physics principles to Al model

« How is physics knowledge represented?

— governing equations

— conservation laws and symmetries
— boundary and initial conditions

— domain-specific knowledge

Type

Governing equations

Conservation Laws

Boundary / Initial Conditions

Domain knowledge

example: simple pendulum

Given Information

Pendulum equation

Conservation of energy

Initial angular position, velocity

Physical limits (e.g. maximum swing angle)

Mathematical Formulation

H = — whsind

1 :
E— —med + mgé(1 — cosb)

2

&

£ THUMUSOFT

Physics-Informed Machine Learning

 How is physics knowledge integrated with machine learning?

Stage

1. Defining Objective

2. Curating Training Data
3. Building Model

4. Defining Loss Function
5. Optimizing Model

6. Making Predictions

Description

Specify what needs to be modeled, including input-output relationships and any known
physics.

Gather training data through experiments, measurements, or simulations. Preprocess raw
data into a format suitable for analysis and modeling.

Choose a machine learning algorithm or a deep learning architecture that best suits your data
and task.

Create a loss function that quantifies the model’s performance in meeting its objectives, such
as matching observed data or adhering to physical laws, during training.

Adjust the model parameters to minimize loss and increase predictive accuracy.

Use the trained model to make predictions or simulate system behavior.

P
B 7

£ HUMUSOFT

Physics-Informed Machine Learning

* Physics can be incorporated at various stages, but often informs:
— model’s structure (stage 3)

— evaluation (stage 4)

« Soft enforcement:
— add physics-based constraints in the loss function (stage 4)
— during training, the model is penalized for violating constraints
— once trained, its predictions may not strictly satisfy them
— e.g. PINN’s

« Hard enforcement:
— design the model architecture (stage 3) so that physical constraints are always satisfied

— e.g. constrained deep learning

P
B P

£ HUMUSOFT'
Exam pleS Of P I M L methOdS * weak embedding of physical knowledge,
e.g. physics-inspired architecture
Approach Description
Neural Ordinary Differential Equation * % = f(x,u), use a neural network to learn f directly from data
) - x = f(x,u), y = g(x,u), use neural networks to learn f and g directly

Neural State-Space tom data

Universal Differential Equation combine known physics with machine-learned components

Hamiltonian Neural Networks account for energy conservation

SINDY (Sparse Identification of Nonlinear Dynamics) reveal the underlying mathematical relationships from data

combine governing equations (ODEs, PDESs) with data to find solutions

PhySICS'Informed Neural Networks that match both observed data and physical laws

learn a mapping from the space of input functions directly to the space of

i *
Fourier Neural Operator solution functions, enabling fast prediction for new scenarios

Graph Neural Networks * operate directly on mesh or graph-based representations

9 https://blogs.mathworks.com/deep-learning/2025/07/14/physics-informed-machine-learning-methods-and-implementation/

https://blogs.mathworks.com/deep-learning/2025/07/14/physics-informed-machine-learning-methods-and-implementation/

P
B 7

£ HUMUSOFT

Physics-Informed Neural Networks (PINNS)

* Neural networks that incorporate physical laws
— physical laws described by differential equations in their loss functions

e Malin purpose
— guide the learning process toward solutions that are more consistent with the underlying physics
— use the trained network as the solution of the differential equation

i ! i R

Deep Learning J Physics Knowledge

dT
prﬁ =V (kVT)

Physics-Informed
Neural Networks

10 https://www.mathworks.com/discovery/physics-informed-neural-networks.html

https://www.mathworks.com/discovery/physics-informed-neural-networks.html

P
I 7

£ HUMUSOFT

Physics-Informed Neural Networks: Loss Function

« Compute loss function L(c) from three terms
— Lpaa(0): known input-output data point from FEM solution
— Lcongs(0): Input-output data points from initial and boundary conditions

— Lpnysics(0): random input data with physical equation to force the physical constraints
Pre-computed FEM data i N
or measurement data Lpaa(o) = N E |Hpmd{gi, ti) — 9i|2 = MSE{ Hpredicted - gknuwn)
i=1

Boundary/Initial Conditions 1 N
Lconas(o) = N E |9pr{:d(ﬂ'iu 1) — '9;'|2 = MSE(Hpredicted — Bxnown)
i=1
Differential Equation I N
Lpnysics(0) =~ 2 | f Oprea(oi t))I* | = PDE(Opreicted) — 0
i=1
Optimization ﬁ Loss function o

Algorithm J‘.”k
G- '

L(6) = Lpaua(6) + Lconds(o) + LPhysics(ﬂ)

11

12

£ HUMUSOFT
Example: Partial Differential Equation
- ou , ou_0.010u

 Burger's equation: — — — -0

g g 5, — uax p——
* Initial conditions: u(x,0) = —sin(zx) 05 1 et
) Boundary COndItlonS u(_1? f) — 0 o % ;g t:; ****************
* Solution space: (t,x) € (0,1) x (—1,1) \M

Data points from initial and boundary conditions are used for L.,.4 €valuation

&
£ THUMUSOFT

Example: FEM Results

 Data points computed by COMSOL Multiphysics used for Ly, evaluation

0.5
= 0
-
-0.5
_1::‘
1
0.8
0.6
0.4
-1
0.2 -0.5
T 0
d 0 0.5
1 X

Example: Enforce the Physics

* Random data samples used for Lppgscs €Valuation

« Used to enforce the output of the network to fulfill the Burger's equation

14

sl

&

£ THUMUSOFT

Example: Live Script in MATLAB

4\ MATLAB R2025a

]
f/‘%/

HOME PLOTS APPS LIVE EDITOR INSERT VIEW Search (Ctri+Shift+Space)
L] ' Ifl>ﬂ < Normal + @ ¢ Refactor ~ ‘ [section Break [:>
CB] ﬁ % Print Q E «;}%} Pa Code Issues @D
- Run and Advance
New Open Save [%l Export - Compare | GoTo Find Code Control Task Copilot Debugger Generate Find Run Run Step
- M - - + [Bockmark ~ E] e - - Test v Tests | Section M Runto End -
FILE MNAVIGATE TEXT CODE ANALYZE TEST SECTION RUN a
{::l |ﬁ' ﬁ (3 » G » UserData » Jirkovsky » Akce » 05 Konference COMSOL > Priklad > PINN -
LE Files i 2| Train_1D_PINN_COMSOL.mix X Workspace EB
Name + (D C:\UserDatalJirkovsky\Akce\05_Konference_COMSOL\Priklad\PINN'Train_1D_PINN_COMSOL.mix Name Value Size
¥ Function [@] net 1x1 dinetwo... 1x1 @3‘

m importFEMData.m
« Live Script
Test_multiple_networks.mlx
Train_1D_PINN_COMSOL.mIx
Train_1D_PINN_COMSOL _test.mlx
~ MAT-file
1) trainedNetCP1000.mat
15 trainedNetCP10000.mat
@ trainedNetCPfine1.mat
@ trainedNet.mat @
@ trainedMetworks.mat
« Plain Text File
= traning_data_coarse.txt
= traning_data_fine.txt

Solve PDE Using Physics-Informed Neural Network

This example shows how to train a physics-informed neural network (PINN) to predict the solutions of the
Burger's equation.

A physics-informed neural network (PINN) [1] is a neural network that incorporates physical laws into its
structure and training process. For example, you can train a neural network that outputs the solution of a
PDE that defines a physical system.

This example trains a PINN that takes samples (x, ¢) as input and outputs u(x, t), where u is the solution of
the Burger's equation:

0.01 Pu _
T ol

du du

o +u e
with u(x,0) = —sin(zx) as the initial condition, and «(—1,¢) = 0 and u(1,¢) = 0 as the boundary conditions.

This diagram illustrates the flow of data through the PINN.

PDE Solution

L1,L2yeey TN
t

—>»{ PINN

Training of this model combine collecting data in advance (FEM, measurement) with generated data
using the definition of the PDE and the constraints. -

Editor: 100% UTF-8 LF Script

15

HUMUSOFT"

&

A HUMUSOFT
Example: Results

« Solution computed by the trained network at the timestamps 0.2, 0.5, 0.8, 1 sec
« Comparison with the standard (non-PINN) network trained only on the FEM data

Data-PINN Net
R R Data net
% ? . y FEM - train
£ :] = = FEM -test
-1+ /// .|

t=0.8)
\
\
\
\
(1)
\
\
\\
\

u(x, t=

16

P
B 7

£ HUMUSOFT

Example: Results

e ZoOom-intheresultatt =1 sec

Data-PINN Net
Data net

FEM - train

w— == EFEM - test

-0.14 -0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0 0.02
X

17

18

Thank you for your attention!

i
£ THUMUSOFT

