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What is Machine Learning ?
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Machine learning uses data and produces a program to perform a task

MACHINE LEARNING
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Machine Learni ng MACHINE LEARNING

« Different Types of Learning:

SUPERVISED UNSUPERVISED
LEARNING LEARNING
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What is Deep Learning ?

Deep learning performs end-end learning by learning features,
representations and tasks directly from images, text and sound

DEEP LEARNING

Convolutional Neural Network (CNN) CAR v
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Demo : Live Object Recognition with Webcam

4 Figure 1
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Input Image

Convolutional Neural Networks

Convolution

RELU
(rectified linear units)

Convolution
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Pooling Pocling Pooling Pooling
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Convolution Layer

e Core building block of a CNN

« Convolve the filters sliding them across the input, computing the dot

roduct
P 3
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* Intuition: learn filters that activate when they “see” some specific feature
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Convolution Layer — Choosing Hyperparameters
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/ Conv Layer Output

 Number of filters, K
* Filter size, F

e Stride, S

e Zero padding, P
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Rectified Linear Unit (ReLU) Layer

* Frequently used in combination with Convolution layers
Do not add complexity to the network
« Most popular choice: f(x) = max(0, x), activation is thresholded at O

f(x) = max(0,x)
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Pooling Layer

« Perform a downsampling operation across the spatial dimensions
« Goal: progressively decrease the size of the layers

 Max pooling and average pooling methods

« Popular choice: Max pooling with 2x2 filters, Stride = 2
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Other Layers

Fully Connected
— Full connections to all activation in previous layer, as in regular Neural Networks
— Each entry is treated as a feature that the network has learned

Softmax
— Computes the probability of a sample belonging to a specific class

Classification
— Performs the classification (output layer)

Local Response Normalization, Dropout, etc.
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Deep Learning is Ubiquitous

Computer Vision

« Pedestrian and traffic sign detection
 Landmark identification

e Scene recognition

 Medical diagnosis and drug discovery

Text and Signal Processing
« Speech Recognition
« Speech & Text Translation

Robotics & Controls and many more...
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Why Is Deep Learning so Popular ?

« Results: Achieved substantially better Pre-2012 (traditional > 250
results on ImageNet large scale computer vision and
- machine learning
recognition challenge techniques)
— 95% + accuracy on ImageNet 1000 class 2012 (Deep Learning) | ~ 15%
challenge 2015 (Deep Learning) <5 %

« Computing Power: GPU’s and advances to
processor technologies have enabled us
to train networks on massive sets of data.

- Data: Availability of storage and access to
large sets of labeled data

— E.g. ImageNet , PASCAL VoC , Kaggle
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3 Approaches for Deep Learning

 Approach 1: Train a Deep Neural Network from Scratch

CONVOLUTIONAL NEURAL NETWORK (CNN)

LEARNED FEATURES
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3 Approaches for Deep Learning

 Approach 2: Fine-tune a pre-trained model (transfer learning)

TRAINED ON CATS AND DOGS FINE-TUNE NETWORK WEIGHTS

CAR v
a % PRE-TRAINED CNN H NEW TASK
— TRUCK X

NEW DATA
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3 Approaches for Deep Learning

« Approach 3: Feature Extraction with traditional Machine Learning

MACHINE LEARNING MODEL

J—E: CARv
SVM,

a PRE-TRAINED CNN DECISION TREE,
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CNN in MATLAB

layers = [imageInputLayer([28 28 1])
convolution2dLayer(5,20)
reluLayer()
maxPooling2dLayer(2, 'Stride’,2)
fullyConnectedLayer(10)
softmaxLayer()
classificationLayer()];

options = trainingOptions('sgdm');
convnet = trainNetwork(trainingData,layers,options);
results = classify(convnet,newData);
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Demo : Train a Deep Neural Network from Scratch

4. Figure 1 - (| X
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Compare Approaches
CAR v
CONVOLUTIONAL NEURAL NETWORK (CNN)
! -95% 7| TRUCK X
LEARNED FEATURES
3%
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Recommended only when:
Training data 1000s to millions of labeled images
Computation Compute intensive (requires GPU)
Training Time Days to Weeks for real problems

Model accuracy High (can overfit to small datasets)
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Demo : Fine-tune a pre-trained model (transfer learning)

4. Figure 1 - (| X
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Compare Approaches

TRANSFER LEARNING

TRAINED ON CATS AND DOGS FINE-TUNE NETWORK WEIGHTS

CAR v
a % PRE-TRAINED CNN H NEW TASK
| [[]]| S— TRUCK X

NEW DATA

Recommended when:

Training data 100s to 1000s of labeled images (small)
Computation Moderate computation (GPU optional)
Training Time Seconds to minutes

Model accuracy Good, depends on the pre-trained CNN model
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Available pre-trained CNNs

AlexNet

— The AlexNet model is trained on more than a million images and can classify images
Into 1000 object categories

e VGG-16 and VGG-19

— VGG-16 and VGG-19 are both trained using the same data set as AlexNet
— VGG-16 has 41 layers, 16 layers with learnable weights
— VGG-19 has 47 layers, 19 layers with learnable weights

importCaffeNetwork
— many pretrained networks available in Caffe Model Zoo
e importCaffelLayers

— Import the network architectures of Caffe networks, without importing the pretrained
network weights
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Verification using Deep Dream Images

* Visualize what the learned features look like

 Generate images that strongly activate a particular channel of the
network layers

* function deepDreamImage
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Demo : Deep Dream Images Using AlexNet

(4 Figure 1 - (53] X
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Accelerating Deep Learning Models with GPUs
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Set options for training

opts = trainingOptions( sgdm’);

Train the network

net = trainNetwork(XTrain,TTrain, layers,opts);

Make predictions

trainfFeatures = activations(net, XTrain,6);
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Deep Learning Models for Regression

 To predict continuous data such as angles and distances in images
* Include aregression layer at the end of the network

layers = [imageInputLayer([28 28 1])
convolution2dLayer(12,25)
reluLayer()

fullyConnectedLayer (1)
regressionLayer()];

options = trainingOptions('sgdm');
convnet = trainNetwork(trainImages,trainAngles,layers,options);
results = predict(convnet,newImages);
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Image Classification vs. Object Detection

* Image Classification

— classify whole image using
set of distinct categories

— object recognition
— scene recognition

* Object Detection

— determine the location of an
(small) object in an image

— multiple objects in one image

28
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Standard Object Detection Algorithms in MATLAB

Object detection using extracted features
— edges, corners, SURF, MSER, HOG, LBP, ...

Bag of features

Template matching

Image segmentation and blob analysis

Viola-Jones algorithm
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Object Detection using Deep Learning

 Family of R-CNN object detectors

— Regions with Convolutional Neural Networks

« Uses region proposal to detect objects within images

R-CNN deep learning detector trainRCNNObjectDetector
Fast R-CNN deep learning detector trainFastRCNNObjectDetector
Faster R-CNN deep learning detector  trainFasterRCNNObjectDetector

30
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Choose Among R-CNN, Fast R-CNN, or Faster R-CNN

 Number of proposed regions = time it takes to detect objects
* Fast R-CNN and Faster R-CNN

— Improve detection performance with a large number of regions

R-CNN deep learning detector « Less time to train an object detector
« Detection time is slow
« Allows custom region proposal

Fast R-CNN deep learning detector Allows custom region proposal

Faster R-CNN deep learning detector

Optimal runtime performance
« Does not require a custom region proposal

31
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Demo : Object Detection using Deep Learning

4 Figure 1 = O X
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Dekuji za pozornost



