

7.9.2017 Brno

TCC 2017

Deep Learning (a Computer Vision)

Jaroslav Jirkovský jirkovsky@humusoft.cz

www.humusoft.cz info@humusoft.cz

www.mathworks.com

What is Machine Learning ?

Machine learning uses data and produces a program to perform a task

MACHINE LEARNING

Machine Learning

• Different Types of Learning:

What is Deep Learning ?

Deep learning performs end-end learning by learning features, representations and tasks directly from images, text and sound

DEEP LEARNING

Demo: Live Object Recognition with Webcam

Convolutional Neural Networks

Input Image Convolution Convolution Convolution Convolution FC → Flower auD 🔶 RELU RELU RELU RELU Fully Connected (rectified linear units) (rectified linear units) (rectified linear units) (rectified linear units) Car layers to support classification Pooling Pooling Pooling Pooling → Tree

Convolution Layer

- Core building block of a CNN
- Convolve the filters sliding them across the input, computing the dot product

Intuition: learn filters that activate when they "see" some specific feature

Convolution Layer – Choosing Hyperparameters

- Number of filters, *K*
- Filter size, F
- Stride, S
- Zero padding, P

Rectified Linear Unit (ReLU) Layer

- Frequently used in combination with Convolution layers
- Do not add complexity to the network
- Most popular choice: f(x) = max(0, x), activation is thresholded at 0

Pooling Layer

- Perform a downsampling operation across the spatial dimensions
- Goal: progressively decrease the size of the layers
- Max pooling and average pooling methods
- Popular choice: Max pooling with 2x2 filters, Stride = 2

Other Layers

- Fully Connected
 - Full connections to all activation in previous layer, as in regular Neural Networks
 - Each entry is treated as a feature that the network has learned
- Softmax
 - Computes the probability of a sample belonging to a specific class
- Classification
 - Performs the classification (output layer)
- Local Response Normalization, Dropout, etc.

Deep Learning is Ubiquitous

Computer Vision

- Pedestrian and traffic sign detection
- Landmark identification
- Scene recognition
- Medical diagnosis and drug discovery

Text and Signal Processing

- Speech Recognition
- Speech & Text Translation

Robotics & Controls

and many more...

Why is Deep Learning so Popular ?

- Results: Achieved substantially better results on ImageNet large scale recognition challenge
 - 95% + accuracy on ImageNet 1000 class challenge
- Computing Power: GPU's and advances to processor technologies have enabled us to train networks on massive sets of data.
- Data: Availability of storage and access to large sets of labeled data

- E.g. ImageNet , PASCAL VoC , Kaggle

Year	Error Rate
Pre-2012 (traditional computer vision and machine learning techniques)	> 25%
2012 (Deep Learning)	~ 15%
2015 (Deep Learning)	<5 %

3 Approaches for Deep Learning

Approach 1: Train a Deep Neural Network from Scratch

3 Approaches for Deep Learning

• Approach 2: Fine-tune a pre-trained model (transfer learning)

3 Approaches for Deep Learning

Approach 3: Feature Extraction with traditional Machine Learning

CNN in MATLAB

```
layers = [imageInputLayer([28 28 1])
          convolution2dLayer(5,20)
          reluLayer()
          maxPooling2dLayer(2,'Stride',2)
          fullyConnectedLayer(10)
          softmaxLayer()
          classificationLayer()];
options = trainingOptions('sgdm');
convnet = trainNetwork(trainingData, layers, options);
results = classify(convnet,newData);
```


Demo : Train a Deep Neural Network from Scratch

Compare Approaches

TRAINING FROM SCRATCH

Recommended <u>only</u> when:

Training data	1000s to millions of labeled images	
Computation	Compute intensive (requires GPU)	
Training Time	Days to Weeks for real problems	
Model accuracy	High (can overfit to small datasets)	

Demo : Fine-tune a pre-trained model (transfer learning)

Compare Approaches

TRANSFER LEARNING

Recommended when:

Training data	100s to 1000s of labeled images (small)	
Computation	Moderate computation (GPU optional)	
Training Time	Seconds to minutes	
Model accuracy	Good, depends on the pre-trained CNN model	

Available pre-trained CNNs

- AlexNet
 - The AlexNet model is trained on more than a million images and can classify images into 1000 object categories
- VGG-16 and VGG-19
 - VGG-16 and VGG-19 are both trained using the same data set as AlexNet
 - VGG-16 has 41 layers, 16 layers with learnable weights
 - VGG-19 has 47 layers, 19 layers with learnable weights
- importCaffeNetwork
 - many pretrained networks available in Caffe Model Zoo
- importCaffeLayers
 - import the network architectures of Caffe networks, without importing the pretrained network weights

Verification using Deep Dream Images

- Visualize what the learned features look like
- Generate images that strongly activate a particular channel of the network layers
- function deepDreamImage

Demo : Deep Dream Images Using AlexNet

•

•

•

•

•

Accelerating Deep Learning Models with GPUs

Deep Learning Models for Regression

- To predict continuous data such as angles and distances in images
- Include a regression layer at the end of the network

- options = trainingOptions('sgdm');
- convnet = trainNetwork(trainImages,trainAngles,layers,options);

results = predict(convnet,newImages);

Image Classification vs. Object Detection

Image Classification

- classify whole image using set of distinct categories
- object recognition
- scene recognition

Object Detection

- determine the location of an (small) object in an image
- multiple objects in one image

Standard Object Detection Algorithms in MATLAB

- Object detection using extracted features
 - edges, corners, SURF, MSER, HOG, LBP, ...
- Bag of features
- Template matching
- Image segmentation and blob analysis
- Viola-Jones algorithm

Object Detection using Deep Learning

- Family of R-CNN object detectors
 - Regions with Convolutional Neural Networks
- Uses region proposal to detect objects within images

Detector	Function
R-CNN deep learning detector	trainRCNNObjectDetector
Fast R-CNN deep learning detector	trainFastRCNNObjectDetector
Faster R-CNN deep learning detector	trainFasterRCNNObjectDetector

Choose Among R-CNN, Fast R-CNN, or Faster R-CNN

- Number of proposed regions ⇒ time it takes to detect objects
- Fast R-CNN and Faster R-CNN
 - improve detection performance with a large number of regions

Detector	Description
R-CNN deep learning detector	 Less time to train an object detector Detection time is slow Allows custom region proposal
Fast R-CNN deep learning detector	 Allows custom region proposal
Faster R-CNN deep learning detector	Optimal runtime performanceDoes not require a custom region proposal

Demo : Object Detection using Deep Learning

Děkuji za pozornost