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Abstract 

In this paper hybrid neuro-fuzzy model based predictive control (HNFMBPC) is 

addressed, proposed and tested. The proposed hybrid neuro-fuzzy convolution model 

consists of a steady-state neuro-fuzzy model and a gain independent impulse response 

model. The proposed model is tested in model based predictive control of the 

concentration control in the chemical reactor, manipulating its flow rate. The paper 

deals with theoretical and practical methodology, offering approach for intelligent 

fuzzy robust control design and its successful application. 

1 Introduction and preliminaries 

In the beginning, the predictive control algorithms were applied in the process technology. 
Today the predictive controllers are used in many areas where a high quality control is required. 
Predictive control is a control strategy that is based on the prediction of the plant output over the 
extended horizon in the future, which enables the controller to predict future changes of the 
measurement signal and to base control actions on the prediction. Advanced predictive control 
techniques use fuzzy logic and neural networks for modeling and control. The new intelligent control 
methods based on neuro-fuzzy approaches used in predictive control algorithms are an efficient tool 
for handling plant with complex dynamics as well as unstable inverse systems plant model miss-
matches, different uncertainties, etc. Due to application of the strategy of using fuzzy systems with 
learning abilities of neural networks the algorithms allow to obtain a higher accuracy of the required 
output in a much shorter time compared to classical systems. 

The future process output is predicted over the prediction horizon using hybrid neuro-fuzzy 
convolution model (HNFCM). The proposed HNFCM can be considered as a gain-scheduled 
convolution model. This paper shows the advantages of a combination of a static nonlinearity and 
gain-independent dynamic part. The steady-state behavior of the process is represented by a neuro-
fuzzy model structure which is based on linguistic knowledge about the steady-state behavior of the 
process. The parameters of the rule consequents are identified using input and output data gathered 
from the process. The dynamic part is represented by an impulse response model. The proposed 
HNFCM is applied in model predictive control.  

The paper is organized as follows: First, design of the hybrid neuro-fuzzy convolution model is 
briefly introduced in Section 2. Then, the neuro-fuzzy model based predictive controller is discussed 
in Section 3. The reliability and effectiveness of the presented method is shown on one application in 
Section 4 - control of the concentration control in the chemical reactor by manipulating its inlet flow 
rate. Summary and conclusions are given in Section 5. 

2 The hybrid neuro-fuzzy convolution model (HNFCM) 

The output of the model can be formulated as [1] 
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where ( )nss xxuKy ,,, 2 K+  is steady-state part, which is described by Takagi-Sugeno fuzzy model and 

( ) ( )( )sn

N

i

i uikuxxg −+−∑
=

1.,,2
1

K  is dynamic part of model (the impulse response model). The gain 

independent impulse response model is gi(x2,...,xn), the previous input values are u(k-i-1) over N 
horizon, K is steady-state gain, us and ys are steady-state input and output, nxx ,,2 K  are other 

operating parameters having effects on the steady-state output. 



The convolution is multiplied by steady-state gain 
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2.1 The steady-state part of HNFCM 

The steady state part is described by Takagi-Sugeno (T-S) fuzzy model. T-S models are suitable 
for modeling a large class of nonlinear systems [4]. A nonlinear discrete system can be expressed by 
T-S fuzzy model with n rules. The i-th rule of the T-S model is described as follows: 

 isinni

i dythenAisxandandAisxifR =,,11: K   (3) 

where n is the number of inputs, x=[x1,...,xn]
T is a vector of inputs of the model, Aj,i(xj) is the 

i=1,2,...,Mj –th antecedent fuzzy set referring to the j-th input, where Mj is the number of the fuzzy set 
on the j-th input domain. The first element of the input vector is the steady-state input x1=us. 

The output is computed as the weighted average of the individual rules’ consequents 
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where the weights 0< iµ <1 are computed as ∏=
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)(µ , where ∏ is fuzzy operator, usually 

been applied as the min or the product operator and m is number of rules. Triangular membership 
functions were employed for each fuzzy linguistic value as shown in Fig. 1. 
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Figure 1: Membership function used for the fuzzy model 

 

The membership functions are defined as follows: 

 

( )

( ) 1,,
,1,

1,
,

,1,
1,,

1,
,

,

,

+
+

+

−
−

−

<≤
−

−
=

<≤
−

−
=

ijjij

ijij

jij

jij

ijjij

ijij

ijj

jij

axa
aa

xa
xA

axa
aa

ax
xA

 (5) 

where 〉∈ +1,,,(
jj mjmjj aax . 

The gain of the steady-state fuzzy model can be computed as 
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2.2 The dynamic part of HNFCM 

The dynamic state part is described by the impulse response model (IRM). The parameters of 
the discrete IRM gi (i=0,…,N, where N is the model horizon) can be easily calculated from the input-
output data (ui and yi) from the process. 

 ( ) ( )∑
=

−=
k

i

i ikugky
0

 (7) 

In matrix form 
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The parameters are given as follows 
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3 The hybrid neuro-fuzzy model based predictive controller (HNFMBPC) 

The nonlinear HNFCM can be easily applied in model based predictive control scheme. In most 
cases, the difference between system outputs and reference trajectory is used with combination of a 
cost function on the control effort. A general objective function is the following quadratic form  
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Here, r is desired set point, Γu ( 2.Ku γ=Γ ) and Γy are weight parameters, determine the relative 

importance of the different terms in the cost function, u and ∆u are the control signal and its 
increment, respectively. Parameter p is the length of the prediction horizon and m is the length of the 
control horizon. Output predicted by the nonlinear fuzzy model is ŷ(k). 
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are the step response coefficients and the change on the control variable is 

( ) ( ) ( )1−−=∆ kukuku . 

The model predictions along the prediction horizon p are 
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Disturbances are considered to be constant between sample instants  
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where y(k|k) represents the measured value of the process output at time k.  

The model output is 
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The prediction of the process output along the length of the prediction horizon, can be written 
compactly using matrix notation 
 )()()(ˆ kfkuKSky +∆=  (15) 
where 
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Matrix S is called the system’s dynamic matrix [5]. By minimizing its objective function (9) the 
optimal solution is then given 
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In many control applications the desired performance cannot be expressed solely as a trajectory 
following problem. Many practical requirements are more naturally expressed as constraints on 
process variables such as manipulated variable constraints, manipulated variable rate constraints or 
output variable constraints. The solution calls into existence of quadratic programming solution of the 
control problem.  

  
3.1 The algorithm for HNFCM based control  

The algorithm has the following steps: 
1. Calculation impulse response model gi from (8), 
2. Calculation of us from ys=y(k), considering the inversion of the fuzzy model, 
3. Calculation of the value of the steady-state gain K by (6), 
4. Calculation of S by (16) and e by (12), 
5. Calculation of the controller output from the first element of the calculated ∆u vector generated 
from (17).  

4 Case study and simulation results  
4.1 Case study 

The application considered involves an isothermal reactor in which the Van Vusse reaction 
kinetic scheme is carried out. In the following analysis, A is the educt, B the desired product, C and D 
are unwanted byproducts.   
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From a design perspective the objective is to make k2 and k3 small in comparison to k1 by 
appropriate choice of catalyst and reaction conditions. The concentration of B in the product may be 
controlled by the manipulating the inlet flow rate and/or the reaction temperature. 
The educt flow contains only cyclopentadiene in low concentration, CAf. Assuming constant density 
and an ideal residence time distribution within the reactor, the mass balance equations for the relevant 
concentrations of cyclopentadiene and of the desired product cyclopentanol, CA and CB, are as follows. 
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This example has been considered by a number of researchers as a benchmark problem for 
evaluating nonlinear process control algorithm. By normalizing the process variables around the 
following operating point and substituting the values for the physical constants, the process model 
becomes: 
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where the deviation variable for the concentration of component A is denoted by x1, the concentration 
of component B by x2, and the inlet flow rate by u. The simulation scheme of this process is in Fig. 2. 
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Figure 2: Simulation scheme for the nonlinear process described by (20) 

 
4.2 Simulation results 

 Graphic menu was created in GUIDE, graphic toolbox of MATLAB for creation of user 
applications. Menu deals with tuning of parameters of predictive controllers: predictive horizon (p), 
control horizon (m) and gamma (γ). User menu is displayed on Fig. 3. In this application model with 
different membership functions can be chosen. Description of HNFCM with Gaussian, trapezoidal and 
bell-type membership functions can be found in [6]. 

 The comparison of HNFCM with the nonlinear plant is shown in Fig. 3. Steady-state part of 
HNFCM was created in ANFIS editor in MATLAB. Time responses of the controlled and reference 
variables under HNFMBPC with the effect of tuning parameter γ are shown in Fig. 4 and Fig. 5. 

 



 
Figure 3: Time responses of output from the nonlinear plant and the HNFCM model 

 

 
Figure 4: Time responses of the controlled and reference variables under HNFMBPC (m=5, p=10, 

Γy=K, γ=1) 
 

  

 



 
Figure 5: Time responses of the controlled and reference variables under HNFMBPC (m=5, p=10, 

Γy=K, γ=0.1) 

 

5 Conclusion 

The HNFMBPC uses the advantage of fuzzy systems in the representation of the steady-state 
behavior of the system. Other advantage is that it tries to combine knowledge about the system in form 
of a priori knowledge and measured data in the identification of a control relevant model. 

Simulation example illustrates the potential offered by the HNFCMBPC. 
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