
PID REGULATOR USING SYSTEM GENERATOR
Ondrej Hock, Jozef Čuntala

University of Zilina, Faculty of Electrical Engineering, Department of Mechatronics and Electronics

Abstract

This article described the implementation of the PID controller in FPGA devices
using the Matlab Simulink environment using System Generator for DSP and setting
timing parameters.

1 Introduction to System Generator toolbox

System Generator for DSP™ is the industry’s leading high-level tool for designing high-
performance DSP systems using FPGAs. Highly parallel systems with the industry’s most advanced
FPGAs are being used. It is possible to provide system modeling and automatic code generation from
Simulink® and MATLAB®. It integrates RTL, embedded, IP, MATLAB and hardware components
of a DSP system. System Generator for DSP is part of both the DSP and System Editions of ISE®
Design Suite. With System Generator for DSP, developers with little FPGA design experience can
quickly create production quality FPGA implementations of DSP algorithms in a fraction of traditional
RTL development times.

Figure1: PID controller built from System Generator blocks

Figure 1 shows PID controller built in System Generator toolbox. The yellow blocks IN and
OUT creating interconnection between the blocks of Simulink and System Generator blocks. The blue
blocks represent the PID controller, which is created according to the equation:

()
dt

ee
KedtIKeKzasreg n

DnIP
1

1_ −
−

−
+++= (1)

Figure 2 shows a overall system model in Matlab Simulink. The yellow block is representing
the PID controller, which is created in System Generator from figure 1. Block System Generator is
important for setting blocks of System Generator.

Figure 2: Overall system model in Matlab Simulink environment

Transfer function of system (equation 2) was calculated for the circuit shown in figure 3, from
which were subsequently calculated parameters of the controller. Those were after directly used, with
a small modification, in the simulation.

1

1

2 ++
=

s
R

L
LCs

ionTransFunct (2)

Figure 3: Controlled circuit

2 Understanding of the time constants

There are several types of timing parameters. Those that refer to absolute units such as
megahertz or nanoseconds are denoted by upper-case letters. All other parameters are denoted by
lowercase letters. Furthermore, the timing measures can be divided into control and analysis
parameters. All these parameters are summarized in Table 1.

Table 1: Timing parameters for System generator design

Name Symbol Unit Effect

C
on

tr
ol

Simulation time unit TSIM s, ms, ns Simulation only

FPGA clock period TCLK ns HW only

Simulink system period pSYS [TCLK/TSIM] Simulation and HW

Sample period pSAM [TSIM] Simulation and HW

A
na

ly
si

s Sample time tSAM [TCLK] None

Sample frequency FSAM MHz None

The first of the control parameters is the simulation time unit TSim. It represents our assumption
on the fundamental unit of time in Simulink simulation. It affects simulation only. TSim can be any
time unit that suits your needs.

The next parameter is the FPGA clock period TCLK, in the System Generator in units of
nanoseconds. It represents the period of the main system clock input to the FPGA from which all other
clock and clock enables are derived. Hence, its setting affects only hardware implementation. For
instance, for our Spartan®-3A DSP 1800 from Xilinx, the FPGA clock period would be 8 ns (125
MHz).

The Simulink system period psys, represents the global link between Simulink simulation and
hardware implementation. We must set this parameter in the System Generator. During simulation,
this value determines how often the System Generator blocks of your model are called, but not
necessarily updated, relative to the simulation time unit. For hardware implementation, it specifies the
amount of overclocking with respect to the sample rate of the controller. Unlike the System Generator

documentation, we define the Simulink system period as a unit less quantity—that is, the ratio of the
FPGA clock period and the assumed simulation time unit:

SIM

CLK
SYS T

T
p = (3)

This way you can assume any simulation time, as mentioned above. The sample period pSAM in
the proposal in SYSGEN, set either explicitly (for example GATEWAY IN-block) or is derived from
changes in the speed of the block as raising or lowering the sample. When it is set explicitly, we
should enter it as a numeric value in units of the expected time simulation. This setting have affects on
the SIMULINK simulation of both the hardware implementation. During the simulation, this value
determines how many times the call will block. These must arrive before the block changes state.
Therefore, all clock signals in the draft SYSGEN are derived from the FPGA clock input, each period
must be an integer multiple of FPGA hour period. However, sometimes FPGA clocks are much
smaller than the basic time unit TSIM. Computation time of simulation can be excruciatingly long,
given the large number of unnecessary simulation cycles. In that situation you can use different
settings for pSYS in a simulation without losing your identity model. This is possible because the value
pSYS affects only part of the SYSGEN in your model. Strictly speaking, you can set pSYS = pSAM during
simulation of your control system. This ensures that the SYSGEN blocks are called only when needed,
and when it actually blocks can change state. Before you generate the FPGA implementation, just set
the initial value pSYS.

In the second category of timing parameters, called the analysis parameters, the first is the
sampling time tSAM. It serves only for the analysis of the SIMULINK models. TSAM is value determines
the hour period in units of FPGAs. The second parameter is sampling frequency FSAM. Each block in
SYSGEN displayed FSAM in MHz. FSAM is derived from the other time parameters:

 CLKSAMCLK
SYS

SAM
SIMSAMCLKenb

SAM

TtT
p

p
TpT

F
====1

 (4)

where TCLKenb is the period of the associated clock enable in implementation.

From the second equation is obvious that each sampling period pSAM must be an integer multiple
of pSYS, because only these clock enable can be derived from the FPGA system clock. Figure 4
exemplifies these relations.

Figure 4: Relation of the six timing parameters exemplified for psys = ¼

3 Conclusion

After a rather long and for beginners as well as difficult setting of timing parameters, we get the
simulation results. Figure 5 shows the response of the regulated system to step response. As we can
see overshoot is less than 10%, what is for example the implementation of the PID controller in
System Generator is absolutely sufficient. To tune the system according to the requirements, we can
just play with parameters of controller.

From the simulation program, we can translate it using SYSGEN to VHDL and used directly in
the FPGA. Likewise, we also recovered from the program in a VHDL simulation program. It is also
possible to use the simulation program written in M-file, by BlackBox block. System Generator for
DSP is a fully-featured tool for simulation programs for the FPGA.

Figure 5: Result of simulation response regulated system to step response

Acknowledgement

The authors wish to thank for the support to the R&D operational program Centre of excellence
of power electronics systems and materials for their components, No. OPVaV-2008/2.1/01-SORO,
ITMS 26220120003 funded by European Community and also to APVV agency for VMSP-P-0085-
09.

References
[1]
[2] System Generator for DSP performing hardware-in-the-loop with the Spartan™-3E starter kit,

Xilinx, 2006
[3] System Generator for DSP – Getting started guide, Xilinx, 2008
[4] www.xilinx.com
[5] K. Khare, R. P. Singh, V. Gupta: FPGA Design and Implementation Issues of Artificial Neural

Network Based PID Controllers, 2009 International Conference on Advances in Recent
Technologies in Communication and Computing

[6] J. Wassner, Ch. Eck: Understanding timing parameters in Xilinx System Generator, Xcell Journal,
Third Quarter 2009, www.xilinx.com/xcell

[7] L. Qu, Y. Huang, L. Ling: Design and implementation of intelligent PID controller based on
FPGA, Fourth International Conference on Natural Computation

[8] W. K. Lee, S. Jung: FPGA Design for Controlling Humanoid Robot Arms by Exoskeleton Motion
Capture System, Proceedings of the 2006 IEEE, International Conference on Robotics and
Biomimetics, December 17 - 20, 2006, Kunming, China

Ing. Ondrej Hock
University of Zilina, Faculty of Electrical Engineering, Department of mechatronics and electronics,
Univerzitna 1, SK-010 26 Zilina, Slovakia, ondrej.hock@fel.uniza.sk,

doc. Ing. Jozef Čuntala, PhD.
University of Zilina, Faculty of Electrical Engineering, Department of mechatronics and electronics,
Univerzitna 1, SK-010 26 Zilina, Slovakia, jozef.cuntala@fel.uniza.sk,

