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Three (or Four?) Types of Surrogate Models 
in COMSOL Multiphysics

1. DNN Based (Deep Neural Network) 
Capturing complex, nonlinear relationships in large sets of data (Digital Twins), 
included in COMSOL Multiphysics® without add-on products

2. GP Based (Gaussian Process) 
A probabilistic framework that provides both predictions and uncertainty (Opitmization and 
Uncertainty Quantification), can handle only thousands of data tables, requires add-on modules.

3. PCE Based (Polynomial Chaos Expansion) 
Representing the influence of random variables (Sensitivity Analysis), can handle only thousands 
of data tables, requires add-on modules.

4. (Other Methods: Model Order Reduction)
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Workflow
 Setting Up a full simulation model

 Computing for a „some“ range of parameters (Design of Experiments)

‒ Manual range (parametric sweep)

‒ Latin hypercube sampling (covers the space of parameters)

 Definition and training in a new function type: Deep Neural Network

 Surrogate model: multidimensional function approximation

 Calling the Deep Neural Network function, e.g. in App or in Digital Twin

Full model

Surrogate  
model

Design of 
experiments

Definition and 
Training of DNN

Design data 
table

COMSOL App
or Digital twin

Use



DNN Architecture
What does DNN look like, and how do 
you design it?

 Input layer: number of inputs

 A series of hidden layers: 
iterative process, knowledge, 
empirical testing, trial and error

 An output layer: number of outputs

Notes: Each layer consists of a number 
of neurons. Too few layers/neurons
may lead to underfitting. Excess 
layers/neurons can cause overfitting.

The figure shows a graph for a network with three hidden layers, five input nodes, and two output nodes.
COMSOL Multiphysics uses Dense feed-forward networks (Dense = every neuron is connected to every neuron 
in the adjacent layer, Feed-Forward = data flows in one direction from input to output). 



The Neuron
Each neuron responds to n inputs by 
returning a scalar output.

Note: DNN Training is searching for 
optimal values of Biases and Weights
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Activation Functions 
Activation Functions in COMSOL 
Multiphysics 6.3:

 Linear: no activation, just a weighted 
sum. Outputs: (–∞, ∞)

 ReLU: returns max(0, x) 
zero or linear for x > 0. Outputs: [0, ∞), 

 ELU: returns x for x > 0, or 𝑒𝑥 pro x ≤ 0. 
It is smooth ReLU. Outputs: [0, ∞). 

 Sigmoid: 
1

1+𝑒−𝑥
with outputs: (0, 1)

 Tanh: 
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥
with outputs: (–1, 1)

Rectified Linear Unit (ReLU) Exponential Linear Unit (ELU)

Sigmoid Hyperbolic Tangent



Analytical Expression 
for DNN Example
Thermal Microactuator is a MEMS device 
that converts an electric input signal into 
mechanical motion.

Simulation model settings:

 Electric current conduction, 

 Heat conduction with Joule heating

 Thermal expansion (Stress and Strain)

Parameters:

 Actuator length

 Applied voltage

Model computes maximum displacement

Dimples

Cold Arm

Anchors

Hot Arms

Applied 
voltage

0V
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Analytical Expression 
for DNN Example
Thermal Microactuator is a MEMS device 
that converts an electric input signal into 
mechanical motion.

Simulation model settings:

 Electric current conduction, 

 Heat conduction with Joule heating

 Thermal expansion (Stress and Strain)

Parameters:

 Actuator length

 Applied voltage

Model computes maximum displacement

w1_11 w1_12 w1_13 w1_14

6.479052 -83.5153 -740.349 1028.273

w1_21 w1_22 w1_23 w1_24

-0.01446 -2.50149 0.217145 -0.23627

b1_1 b1_2 b1_3 b1_4

-0.03275 9.940952 -2.92705 2.314871

w2_11 w2_12 w2_21 w2_22

1.882123 131.0688 0.004636 -0.17448

w2_31 w2_32 w2_41 w2_42

-235.551 -211.39 -61.658 -81.0836

b2_1 b2_2

-175.955 -115.824

w3_11 w3_21

-141.037 -148.391

b3_1

8.237812

dnn(x1,x2) =
tanh(w3_11*(tanh(w2_11*(tanh(w1_11*(x1)+w1_21*(x2)+b1_1))+w2_21*(tanh(w1_12*(x1)+w1_22
*(x2)+b1_2))+w2_31*(tanh(w1_13*(x1)+w1_23*(x2)+b1_3))+w2_41*(tanh(w1_14*(x1)+w1_24*(x2)
+b1_4))+b2_1))+w3_21*(tanh(w2_12*(tanh(w1_11*(x1)+w1_21*(x2)+b1_1))+w2_22
*(tanh(w1_12*(x1)+w1_22*(x2)+b1_2))+w2_32*(tanh(w1_13*(x1)+w1_23*(x2)+b1_3))+w2_42*
(tanh(w1_14*(x1)+w1_24*(x2)+b1_4))+b2_2))+b3_1)

The Table shows optimized values of weights and biases. The data needs to be scaled before the network can be 
optimized, since the network uses the tanh activation function, and the output values of tanh are limited to (-1, 1).    



Influence of Network 
Architecture and 
Activation Function
For regression tasks, as an alternative to 
using the tanh activation function,
a combination of the ReLU and Linear
activation functions can be used. 
Comparision:

 Tanh [2,4,8,4,1]

 ReLU + Linear [2,4,8,4,1] – Loss 0.2

 ReLU + Linear [2,8,16,8,1]

 ReLU + Linear [2,16,32,16,1]

 ReLU + Linear [2,32,64,32,1]

Tanh [2,4,8,4,1] ReLU + Linear [2,8,16,8,1]

ReLU + Linear [2,16,32,16,1]
ReLU + Linear [2,32,64,32,1]
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Training a DNN
 Training involves optimizing weights and biases 

to minimize error.

 Objective of training: Align the surrogate model 
closely with the finite element model. 

 COMSOL uses the ADAM (Adaptive Moment 
Estimation) algorithm, which evaluates the first 
(mean) and second (variance) moments of the 
gradient of the loss function to optimize weights 
and biases.

 Error measurement is calculated via the loss 
function.

 Different types of loss functions can be used.

 The default loss function is Root-mean-square 
error (RMSE).

ADAM algorithm is adaptive stochastic gradient descent method (SGD). The stochastic method randomly selects one 
small mini-batch of data ata time, to perform an update on the network parameters. The randomness in selecting 
data points introduces variability in the gradient estimates, which helps escaping local minima in the loss landscape, 
potentially leading to better generalization on unseen data. As a result, the updates to the network parameters are 
noisy, as can be seen from the convergence plots.



Training and Validation Loss
Training data are split into Primary training data and Validation data.

 Training loss:

‒ Reflects model performance on the primary training data. 

 Validation loss:

‒ Indicates model performance on a separate, unseen subset of data. Why? 
If we train and test the model on the same data, it can learn the specifics of that 
data, leading to poor generalization.

Note: When I was a child, I loved solving equations. Every math book had a few 
step-by-step examples, and I learned from these examples. Then, I solved new 
problems using what I had learned and checked my answers with the correct 
solutions—that’s like training loss and validation loss.

Design data table

Primary training data
Validation 

data



Training and Validation 
Settings
 Learning rate: the step size during the 

optimization process. Too small rate can lead to 
the model getting stuck in a local minimum. Too 
large rate can result in overshooting the minimum 
and poor convergence.

 Batch size: the division of training data into 
subsets during the optimization process. Too small
batch can lead to noisy gradient updates and 
longer training times. Too large batch might lead 
to poor generalization.

 Number of epochs: number of complete passes 
through the entire dataset. Too few epochs can 
result in underfitting, where the model has not 
adequately learned from the training data. Too 
many epochs can lead to overfitting, where the 
model learns the noise in the training data and 
performs poorly on new, unseen data.

 Validation data fraction: the size of the validation 
data sample.

Visualization of an overfitted model (left) and Well-fitted model (right)
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1D Burger‘s equation

 Equation: 
𝜕𝑢

𝜕𝑡
+ 𝑢
𝜕𝑢

𝜕𝑥
−
0.01

𝜋

𝜕2𝑢

𝜕𝑥2
= 0

 Space and time domain: 𝑥 ∈  −1,  1 , 𝑡 ∈  0,  1

 Initial conditions:  𝑢 𝑥, 0 = −𝑠𝑖𝑛 𝜋𝑥

 Boundary conditions: 𝑢 −1, 𝑡 = 0, 𝑢 1, 𝑡 = 0



How to Type Your Own 
Equation in COMSOL
 1D Component

‒ Interval

 1D General Form PDE

‒ Filling the equation into the template

‒ Initial Condition Settings

‒ Dirichlet Boundary Condition

 User Controled Mesh

‒ Edge with Distribution

‒ 1000 elements

 Time Dependent Study

‒ Output times: range(0,1/50,1)

‒ Adaptive mesh refinement
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Baking a Deep Neural 
Network (DNN)
 Export Data

 Functions: Deep Neural Network

‒ Data: exported *.txt table

‒ Data Columns:
arguments: x, t
function value: u

‒ Layers and Activations:
[2, 8, 16, 32, 8, 1] with tanh activation

‒ Training and Validation:
Default settings + Train on GPU
First 10000 epochs with rate 1e-3
Other 5000 epochs with rate 1e-4
Continue Training

 Plot DNN in the x-t-u space
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More Realistic Example:
Less Training Data
 Design Space x-t-u is perfect showcase, 

but you would probably use interpolation 
instead of DNN.

 DNN is technology for larger sets of data 
and more complex systems.

 Imagine x-y-z-T-P training data space:

‒ Air Cooled BESS

‒ Training data for 55 parameter values 
(105 M rows in the table)

‒ DNN [5,50,100,200,300,200,100,50,1]

‒ Digital Twin in application

 In this case – you will have probably 
sparse space of training data
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computational cost? Training data are either missing or have bad 
precision in potentially important regions! DNN has no chance to 
approximate the real-physics correctly.



More Realistic Example:
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‒ Interval

 1D General Form PDE

‒ Filling the equation into the template

‒ Initial Condition Settings

‒ Dirichlet Boundary Condition

 User Controled Mesh

‒ Edge with Distribution

‒ 1000 elements 50 elements

 Time Dependent Study

‒ Output times: range(0,1/50,1)

‒ Adaptive mesh refinement

What if there is only a small amount of data due to high 
computational cost? Training data are either missing or have bad 
precision in potentially important regions! DNN has no chance to 
approximate the real-physics correctly.

One option is to 
include information 
in the loss function 
about whether the 
PDE is satisfied!


