
Physics-Informed Neural Networks:
COMSOL Multiphysics® and MATLAB®

Martin Kožíšek
kozisek@humusoft.cz

Jaroslav Jirkovský
jirkovsky@humusoft.cz

1. Introduction to Surrogate Models in COMSOL

2. Deep Neural Networks in COMSOL
‒ Workflow

‒ DNN Architecture

‒ One Neuron

‒ Activation Function

‒ Analytical Expression For a Deep Neural Network Model

‒ Influence of Network Architecture and Activation Function

3. Learning and Validation Process

4. Example in COMSOL

5. More Realistic Example in COMSOL

6. Introduction Neural Networks in MATLAB

7. Physics-Informed Neural Networks

8. Example in MATLAB

Schedule

Introduction to Surrogate
Models in COMSOL
Martin Kožíšek
kozisek@humusoft.cz
www.linkedin.com/in/martinkozisek/

mailto:kozisek@humusoft.cz
https://www.linkedin.com/in/martinkozisek/

Three (or Four?) Types of Surrogate Models
in COMSOL Multiphysics

1. DNN Based (Deep Neural Network)
Capturing complex, nonlinear relationships in large sets of data (Digital Twins),
included in COMSOL Multiphysics® without add-on products

2. GP Based (Gaussian Process)
A probabilistic framework that provides both predictions and uncertainty (Opitmization and
Uncertainty Quantification), can handle only thousands of data tables, requires add-on modules.

3. PCE Based (Polynomial Chaos Expansion)
Representing the influence of random variables (Sensitivity Analysis), can handle only thousands
of data tables, requires add-on modules.

4. (Other Methods: Model Order Reduction)

Deep Neural Networks
in COMSOL Multiphysics
Martin Kožíšek
kozisek@humusoft.cz
www.linkedin.com/in/martinkozisek/

mailto:kozisek@humusoft.cz
https://www.linkedin.com/in/martinkozisek/

Workflow
 Setting Up a full simulation model

 Computing for a „some“ range of parameters (Design of Experiments)

‒ Manual range (parametric sweep)

‒ Latin hypercube sampling (covers the space of parameters)

 Definition and training in a new function type: Deep Neural Network

 Surrogate model: multidimensional function approximation

 Calling the Deep Neural Network function, e.g. in App or in Digital Twin

Full model

Surrogate
model

Design of
experiments

Definition and
Training of DNN

Design data
table

COMSOL App
or Digital twin

Use

DNN Architecture
What does DNN look like, and how do
you design it?

 Input layer: number of inputs

 A series of hidden layers:
iterative process, knowledge,
empirical testing, trial and error

 An output layer: number of outputs

Notes: Each layer consists of a number
of neurons. Too few layers/neurons
may lead to underfitting. Excess
layers/neurons can cause overfitting.

The figure shows a graph for a network with three hidden layers, five input nodes, and two output nodes.
COMSOL Multiphysics uses Dense feed-forward networks (Dense = every neuron is connected to every neuron
in the adjacent layer, Feed-Forward = data flows in one direction from input to output).

The Neuron
Each neuron responds to n inputs by
returning a scalar output.

Note: DNN Training is searching for
optimal values of Biases and Weights

𝑏1
(1)

1

2

𝑤1,1
(1)

𝑤2,1
(1)

𝑥𝑗 = 𝑓 𝑏𝑗 +

𝑖=1

𝑛

𝑥𝑖𝑤𝑖

Output

Activation
function

Bias

Input i
Weight i

𝑥1
(1)
= 𝑓 𝑏1

(1)
+ 𝑥1
(0)
𝑤1,1
(1)

+𝑥2
(0)
𝑤2,1
(1)

Activation Functions
Activation Functions in COMSOL
Multiphysics 6.3:

 Linear: no activation, just a weighted
sum. Outputs: (–∞, ∞)

 ReLU: returns max(0, x)
zero or linear for x > 0. Outputs: [0, ∞),

 ELU: returns x for x > 0, or 𝑒𝑥 pro x ≤ 0.
It is smooth ReLU. Outputs: [0, ∞).

 Sigmoid:
1

1+𝑒−𝑥
with outputs: (0, 1)

 Tanh:
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥
with outputs: (–1, 1)

Rectified Linear Unit (ReLU) Exponential Linear Unit (ELU)

Sigmoid Hyperbolic Tangent

Analytical Expression
for DNN Example
Thermal Microactuator is a MEMS device
that converts an electric input signal into
mechanical motion.

Simulation model settings:

 Electric current conduction,

 Heat conduction with Joule heating

 Thermal expansion (Stress and Strain)

Parameters:

 Actuator length

 Applied voltage

Model computes maximum displacement

Dimples

Cold Arm

Anchors

Hot Arms

Applied
voltage

0V

Analytical Expression
for DNN Example
Thermal Microactuator is a MEMS device
that converts an electric input signal into
mechanical motion.

Simulation model settings:

 Electric current conduction,

 Heat conduction with Joule heating

 Thermal expansion (Stress and Strain)

Parameters:

 Actuator length

 Applied voltage

Model computes maximum displacement

Analytical Expression
for DNN Example
Thermal Microactuator is a MEMS device
that converts an electric input signal into
mechanical motion.

Simulation model settings:

 Electric current conduction,

 Heat conduction with Joule heating

 Thermal expansion (Stress and Strain)

Parameters:

 Actuator length

 Applied voltage

Model computes maximum displacement

w1_11 w1_12 w1_13 w1_14

6.479052 -83.5153 -740.349 1028.273

w1_21 w1_22 w1_23 w1_24

-0.01446 -2.50149 0.217145 -0.23627

b1_1 b1_2 b1_3 b1_4

-0.03275 9.940952 -2.92705 2.314871

w2_11 w2_12 w2_21 w2_22

1.882123 131.0688 0.004636 -0.17448

w2_31 w2_32 w2_41 w2_42

-235.551 -211.39 -61.658 -81.0836

b2_1 b2_2

-175.955 -115.824

w3_11 w3_21

-141.037 -148.391

b3_1

8.237812

dnn(x1,x2) =
tanh(w3_11*(tanh(w2_11*(tanh(w1_11*(x1)+w1_21*(x2)+b1_1))+w2_21*(tanh(w1_12*(x1)+w1_22
(x2)+b1_2))+w2_31(tanh(w1_13*(x1)+w1_23*(x2)+b1_3))+w2_41*(tanh(w1_14*(x1)+w1_24*(x2)
+b1_4))+b2_1))+w3_21*(tanh(w2_12*(tanh(w1_11*(x1)+w1_21*(x2)+b1_1))+w2_22
(tanh(w1_12(x1)+w1_22*(x2)+b1_2))+w2_32*(tanh(w1_13*(x1)+w1_23*(x2)+b1_3))+w2_42*
(tanh(w1_14*(x1)+w1_24*(x2)+b1_4))+b2_2))+b3_1)

The Table shows optimized values of weights and biases. The data needs to be scaled before the network can be
optimized, since the network uses the tanh activation function, and the output values of tanh are limited to (-1, 1).

Influence of Network
Architecture and
Activation Function
For regression tasks, as an alternative to
using the tanh activation function,
a combination of the ReLU and Linear
activation functions can be used.
Comparision:

 Tanh [2,4,8,4,1]

 ReLU + Linear [2,4,8,4,1] – Loss 0.2

 ReLU + Linear [2,8,16,8,1]

 ReLU + Linear [2,16,32,16,1]

 ReLU + Linear [2,32,64,32,1]

Tanh [2,4,8,4,1] ReLU + Linear [2,8,16,8,1]

ReLU + Linear [2,16,32,16,1]
ReLU + Linear [2,32,64,32,1]

Training and Validation Process
Martin Kožíšek
kozisek@humusoft.cz
www.linkedin.com/in/martinkozisek/

mailto:kozisek@humusoft.cz
https://www.linkedin.com/in/martinkozisek/

Training a DNN
 Training involves optimizing weights and biases

to minimize error.

 Objective of training: Align the surrogate model
closely with the finite element model.

 COMSOL uses the ADAM (Adaptive Moment
Estimation) algorithm, which evaluates the first
(mean) and second (variance) moments of the
gradient of the loss function to optimize weights
and biases.

 Error measurement is calculated via the loss
function.

 Different types of loss functions can be used.

 The default loss function is Root-mean-square
error (RMSE).

ADAM algorithm is adaptive stochastic gradient descent method (SGD). The stochastic method randomly selects one
small mini-batch of data ata time, to perform an update on the network parameters. The randomness in selecting
data points introduces variability in the gradient estimates, which helps escaping local minima in the loss landscape,
potentially leading to better generalization on unseen data. As a result, the updates to the network parameters are
noisy, as can be seen from the convergence plots.

Training and Validation Loss
Training data are split into Primary training data and Validation data.

 Training loss:

‒ Reflects model performance on the primary training data.

 Validation loss:

‒ Indicates model performance on a separate, unseen subset of data. Why?
If we train and test the model on the same data, it can learn the specifics of that
data, leading to poor generalization.

Note: When I was a child, I loved solving equations. Every math book had a few
step-by-step examples, and I learned from these examples. Then, I solved new
problems using what I had learned and checked my answers with the correct
solutions—that’s like training loss and validation loss.

Design data table

Primary training data
Validation

data

Training and Validation
Settings
 Learning rate: the step size during the

optimization process. Too small rate can lead to
the model getting stuck in a local minimum. Too
large rate can result in overshooting the minimum
and poor convergence.

 Batch size: the division of training data into
subsets during the optimization process. Too small
batch can lead to noisy gradient updates and
longer training times. Too large batch might lead
to poor generalization.

 Number of epochs: number of complete passes
through the entire dataset. Too few epochs can
result in underfitting, where the model has not
adequately learned from the training data. Too
many epochs can lead to overfitting, where the
model learns the noise in the training data and
performs poorly on new, unseen data.

 Validation data fraction: the size of the validation
data sample.

Visualization of an overfitted model (left) and Well-fitted model (right)

Example in COMSOL Multiphysics
Martin Kožíšek
kozisek@humusoft.cz
www.linkedin.com/in/martinkozisek/

mailto:kozisek@humusoft.cz
https://www.linkedin.com/in/martinkozisek/

1D Burger‘s equation

 Equation:
𝜕𝑢

𝜕𝑡
+ 𝑢
𝜕𝑢

𝜕𝑥
−
0.01

𝜋

𝜕2𝑢

𝜕𝑥2
= 0

 Space and time domain: 𝑥 ∈ −1, 1 , 𝑡 ∈ 0, 1

 Initial conditions: 𝑢 𝑥, 0 = −𝑠𝑖𝑛 𝜋𝑥

 Boundary conditions: 𝑢 −1, 𝑡 = 0, 𝑢 1, 𝑡 = 0

How to Type Your Own
Equation in COMSOL
 1D Component

‒ Interval

 1D General Form PDE

‒ Filling the equation into the template

‒ Initial Condition Settings

‒ Dirichlet Boundary Condition

 User Controled Mesh

‒ Edge with Distribution

‒ 1000 elements

 Time Dependent Study

‒ Output times: range(0,1/50,1)

‒ Adaptive mesh refinement

How to Type Your Own
Equation in COMSOL
 1D Component

‒ Interval

 1D General Form PDE

‒ Filling the equation into the template

‒ Initial Condition Settings

‒ Dirichlet Boundary Condition

 User Controled Mesh

‒ Edge with Distribution

‒ 1000 elements

 Time Dependent Study

‒ Output times: range(0,1/50,1)

‒ Adaptive mesh refinement

Baking a Deep Neural
Network (DNN)
 Export Data

 Functions: Deep Neural Network

‒ Data: exported *.txt table

‒ Data Columns:
arguments: x, t
function value: u

‒ Layers and Activations:
[2, 8, 16, 32, 8, 1] with tanh activation

‒ Training and Validation:
Default settings + Train on GPU
First 10000 epochs with rate 1e-3
Other 5000 epochs with rate 1e-4
Continue Training

 Plot DNN in the x-t-u space

1

1

Baking a Deep Neural
Network (DNN)
 Export Data

 Functions: Deep Neural Network

‒ Data: exported *.txt table

‒ Data Columns:
arguments: x, t
function value: u

‒ Layers and Activations:
[2, 8, 16, 32, 8, 1] with tanh activation

‒ Training and Validation:
Default settings + Train on GPU
First 10000 epochs with rate 1e-3
Other 5000 epochs with rate 1e-4
Continue Training

 Plot DNN in the x-t-u space

2

2

Baking a Deep Neural
Network (DNN)
 Export Data

 Functions: Deep Neural Network

‒ Data: exported *.txt table

‒ Data Columns:
arguments: x, t
function value: u

‒ Layers and Activations:
[2, 8, 16, 32, 8, 1] with tanh activation

‒ Training and Validation:
Default settings + Train on GPU
First 10000 epochs with rate 1e-3
Other 5000 epochs with rate 1e-4
Continue Training

 Plot DNN in the x-t-u space

3

3

Baking a Deep Neural
Network (DNN)
 Export Data

 Functions: Deep Neural Network

‒ Data: exported *.txt table

‒ Data Columns:
arguments: x, t
function value: u

‒ Layers and Activations:
[2, 8, 16, 32, 8, 1] with tanh activation

‒ Training and Validation:
Default settings + Train on GPU
First 10000 epochs with rate 1e-3
Other 5000 epochs with rate 1e-4
Continue Training

 Plot DNN in the x-t-u space

4

4

Baking a Deep Neural
Network (DNN)
 Export Data

 Functions: Deep Neural Network

‒ Data: exported *.txt table

‒ Data Columns:
arguments: x, t
function value: u

‒ Layers and Activations:
[2, 8, 16, 32, 8, 1] with tanh activation

‒ Training and Validation:
Default settings + Train on GPU
First 10000 epochs with rate 1e-3
Other 5000 epochs with rate 1e-4
Continue Training

 Plot DNN in the x-t-u space

5
5

Baking a Deep Neural
Network (DNN)
 Export Data

 Functions: Deep Neural Network

‒ Data: exported *.txt table

‒ Data Columns:
arguments: x, t
function value: u

‒ Layers and Activations:
[2, 8, 16, 32, 8, 1] with tanh activation

‒ Training and Validation:
Default settings + Train on GPU
First 10000 epochs with rate 1e-3
Other 5000 epochs with rate 1e-4
Continue Training

 Plot DNN in the x-t-u space

6

6

Baking a Deep Neural
Network (DNN)
 Export Data

 Functions: Deep Neural Network

‒ Data: exported *.txt table

‒ Data Columns:
arguments: x, t
function value: u

‒ Layers and Activations:
[2, 8, 16, 32, 8, 1] with tanh activation

‒ Training and Validation:
Default settings + Train on GPU
First 10000 epochs with rate 1e-3
Other 5000 epochs with rate 1e-4
Continue Training

 Plot DNN in the x-t-u space

7

7

Baking a Deep Neural
Network (DNN)
 Export Data

 Functions: Deep Neural Network

‒ Data: exported *.txt table

‒ Data Columns:
arguments: x, t
function value: u

‒ Layers and Activations:
[2, 8, 16, 32, 8, 1] with tanh activation

‒ Training and Validation:
Default settings + Train on GPU
First 10000 epochs with rate 1e-3
Other 5000 epochs with rate 1e-4
Continue Training

 Plot DNN in the x-t-u space

8

8

Baking a Deep Neural
Network (DNN)
 Export Data

 Functions: Deep Neural Network

‒ Data: exported *.txt table

‒ Data Columns:
arguments: x, t
function value: u

‒ Layers and Activations:
[2, 8, 16, 32, 8, 1] with tanh activation

‒ Training and Validation:
Default settings + Train on GPU
First 10000 epochs with rate 1e-3
Other 5000 epochs with rate 1e-4
Continue Training

 Plot DNN in the x-t-u space 9

9

Baking a Deep Neural
Network (DNN)
 Export Data

 Functions: Deep Neural Network

‒ Data: exported *.txt table

‒ Data Columns:
arguments: x, t
function value: u

‒ Layers and Activations:
[2, 8, 16, 32, 8, 1] with tanh activation

‒ Training and Validation:
Default settings + Train on GPU
First 10000 epochs with rate 1e-3
Other 5000 epochs with rate 1e-4
Continue Training

 Plot DNN in the x-t-u space

More Realistic Example
Martin Kožíšek
kozisek@humusoft.cz
www.linkedin.com/in/martinkozisek/

mailto:kozisek@humusoft.cz
https://www.linkedin.com/in/martinkozisek/

More Realistic Example:
Less Training Data
 Design Space x-t-u is perfect showcase,

but you would probably use interpolation
instead of DNN.

 DNN is technology for larger sets of data
and more complex systems.

 Imagine x-y-z-T-P training data space:

‒ Air Cooled BESS

‒ Training data for 55 parameter values
(105 M rows in the table)

‒ DNN [5,50,100,200,300,200,100,50,1]

‒ Digital Twin in application

 In this case – you will have probably
sparse space of training data

More Realistic Example:
Less Training Data
 1D Component

‒ Interval

 1D General Form PDE

‒ Filling the equation into the template

‒ Initial Condition Settings

‒ Dirichlet Boundary Condition

 User Controled Mesh

‒ Edge with Distribution

‒ 1000 elements 50 elements

 Time Dependent Study

‒ Output times: range(0,1/50,1)

‒ Adaptive mesh refinement

More Realistic Example:
Less Training Data
 1D Component

‒ Interval

 1D General Form PDE

‒ Filling the equation into the template

‒ Initial Condition Settings

‒ Dirichlet Boundary Condition

 User Controled Mesh

‒ Edge with Distribution

‒ 1000 elements 50 elements

 Time Dependent Study

‒ Output times: range(0,1/50,1)

‒ Adaptive mesh refinement

What if there is only a small amount of data due to high
computational cost? Training data are either missing or have bad
precision in potentially important regions! DNN has no chance to
approximate the real-physics correctly.

More Realistic Example:
Less Training Data
 1D Component

‒ Interval

 1D General Form PDE

‒ Filling the equation into the template

‒ Initial Condition Settings

‒ Dirichlet Boundary Condition

 User Controled Mesh

‒ Edge with Distribution

‒ 1000 elements 50 elements

 Time Dependent Study

‒ Output times: range(0,1/50,1)

‒ Adaptive mesh refinement

What if there is only a small amount of data due to high
computational cost? Training data are either missing or have bad
precision in potentially important regions! DNN has no chance to
approximate the real-physics correctly.

One option is to
include information
in the loss function
about whether the
PDE is satisfied!

