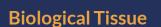
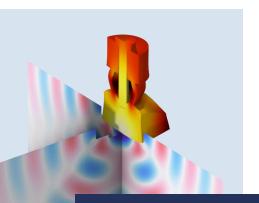


Curvilinear Coordinates

Nancy Bannach


Development Manager, COMSOL

Coordinate Systems


How to set up and use different coordinate systems in COMSOL.

Application Areas

Stiffness of muscle tissue (fibers) or arterial walls depend on direction.

Piezoelectric Material

Materials have direction dependent properties. Align coordinate system with crystal axes or polarization direction.

Composites

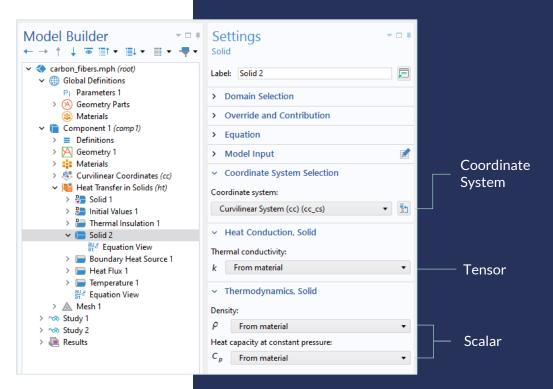
Composites often have anisotropic properties (e.g. fibers). Especially in layered structures these often vary for each layer.

- 🖉 Base Vector System
- 🛤 Combined System
- Mapped System
- Scaling System
- 🗾 Boundary System
- Rotated System
- 🛕 🛛 Cylindrical System
- 🕭 Spherical System
- 💁 System from Geometry
- 🛤 Composite System

Coordinate Systems in COMSOL

- Global cartesian coordinate system shown in Graphics window
- User-defined coordinate systems can be used to define material properties or for physics settings.
- COMSOL uses global system to solve the equations
- Coordinate system transformations are done automatically

Use Coordinate Systems in **Physics Features**


0

- The selected coordinate systems will be used for all tensor or vector inputs
- COMSOL automatically computes the transformation to the global system

🗋 🍃 😣 🔟 📮 🔣 🦘 🗸 👉 😼 🤯 菜 carbon_fibers.mph - COMSOL Multiphysics File Definitions Geometry Materials Physics Mesh Study Results Developer lome a= Variables ~ import f(x) Functions ~ cta LiveLink ~ Model Build Add Add Mesh Application Component Add Parameters Heat Transfer Build Builder Material in Solids ~ Physics Mesh 1. Manager 1. Component ~ All Mathematics Pi Parameter Case Part Libraries Workspace Model Definitions Geometry Materials Physics Mesh Model Builder Settings -Graphics Temperature × * 🗆 🖡 ← → ↑ ↓ 🐷 III + III + III + 🕂 + Solid 周 Label: Solid 2 ✓ ⊕ Global Definitions P: Parameters 1 0.6 Domain Selection > (A) Geometry Parts Materials Fibers (Core) Selection: Component 1 (comp 1) cm 14 Definitions È -----15 0.4 a= Variables 1 6 16 > 🐁 Selections · ÷· 17 Mass Properties 1 (mass 1) 18 Boundary System 1 (sys 1) 19 Base Vector System 2 (sys2) Rotated System 3 (sys3) A Cylindrical System 4 (sys4) > Override and Contribution Curvilinear System (cc) (cc cs) > Equation > 🚺 View 1 > A Geometry 1 1 Model Input > Materials ✓ Station Continues (cc) Coordinate System Selection Coordinate System Settings 1 > E Diffusion Method 1 Coordinate system: ✓ ● Heat Transfer in Solids (ht) - = Curvilinear System (cc) (cc_cs) Solid 1 Global coordinate system Initial Values 1 Base Vector System 2 (sys2) Participation 1 Solid 2 Rotated System 3 (sys3) Boundary Heat Source 1 Cylindrical System 4 (sys4) Heat Flux 1 Curvilinear System (cc) (cc cs) Temperature 1 Thermodynamics, Solid > A Mesh 1 > ~ Study 1 Density: > ~ Study 2 P From material -> In Results Heat capacity at constant pressure: C_p From material -

Example: Heat Transfer

- Input of user-defined coordinate systems is only available in features that can make use of it
- Use the coordinate system to define the thermal properties
- Tensor-valued properties automatically use the selected coordinate system
- Scalar values are not affected

Example: Heat Transfer

- Which equations and variables are computed can be inspected in the equation view
- Variables are transformed automatically into global system
- Equations and other variables are not transformed

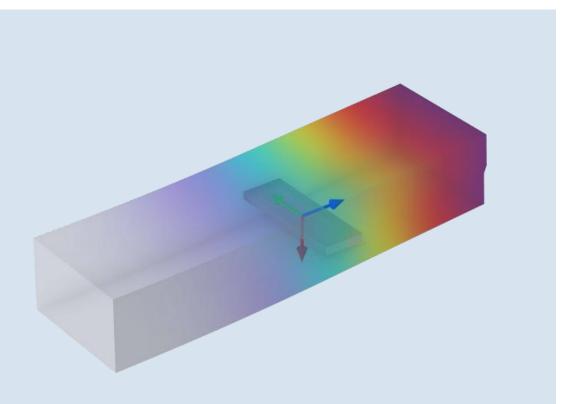
					_	
Se	ttings			→ □ 4		
Equ	ation View					
C	₅					
.abe	l: Equation	View		Ē		Computation of
> 5	Study					thermal
 Variables 						conductivity tensor
**	Name	Expression		1		components
	ht.kxz	(spatial.F13*(cc_cs.T11*(spatial.F11*(cc_cs.T11*ht.soli	d2.k_locale1e1+cc_cs	s.T21* \ ^		
	ht.kyx	(spatial.F11*(cc_cs.T11*(spatial.F12*(cc_cs.T11*ht.soli	d2.k_locale1e1+cc_cs	s.T21* Ν		
	ht.kyy	(spatial.F12*(cc_cs.T11*(spatial.F12*(cc_cs.T11*ht.soli	d2.k_locale1e1+cc_cs	s.T21* \		
<	ht.kvz	(spatial.F13*(cc cs.T11*(spatial.F12*(cc cs.T11*ht.soli	d2.k locale1e1+cc cs	5.T21* \\ ≻		
IJ	ち @ ∙					
	Shape Funct	tions				
~ 1	Weak Expre	ssions				
**	Weak expr	ession	Integration order	Frame		
	(ht.dfluxx*t	test(Tx)+ht.dfluxy*test(Ty)+ht.dfluxz*test(Tz))*ht.d	4	Spatial		Equation to
			-			solve

Thermal Conductivity

- Define components of thermal conductivity (isotropic, diagonal, symmetric, full)
- Which coordinate system is used is determined by the physics feature.

	Set Mate	tings _{rial}				•	• •	
 ✓		Label: Carbon Name: mat2						
		Geometric Entity Selection						
		Geometric entity level		el: Domain 👻				
> 🖂 Geometry 1	Selection:		🛱 Fibers				•	
 Image: Materials Epoxy (mat1) Earbon (mat2) Carbon (Infinite Element Domai Curvilinear Coordinates (cc) Coordinate System Settings 1 Diffusion Method 1 Heat Transfer in Solids (ht) Solid 1 Initial Values 1 Thermal Insulation 1 Solid 2 Boundary Heat Source 1 	 (28 inapplicable entities) 14 15 16 17 18 Override Material Properties Material Contents 							
Heat Flux 1	**	Property		Variable	Value	Unit		
Temperature 1	\square	Thermal cond	uctivity	{k11, k22,	{60, 4, 4}	W/(m	ı∙K)	
 > A Mesh 1 > S Study 1 > S Study 2 	N N	Density Heat capacity	ව Ther	rmal condu	ctivity	-	,	: כ
,-			Diago	onal				
			60		0	0		
			0		4	0		

0

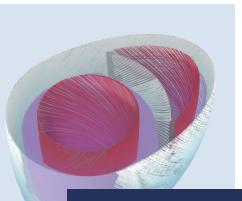

0

4 0K

Cancel

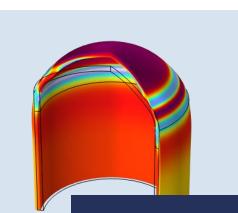
DEMO Piezoelectric Actuator

How to use and set up different coordinate systems.


FOLLOW SHAPE Curvilinear Coordinates

Compute a coordinate system if a basic coordinate system is too difficult to use, e.g. for fibrous material in complex shapes

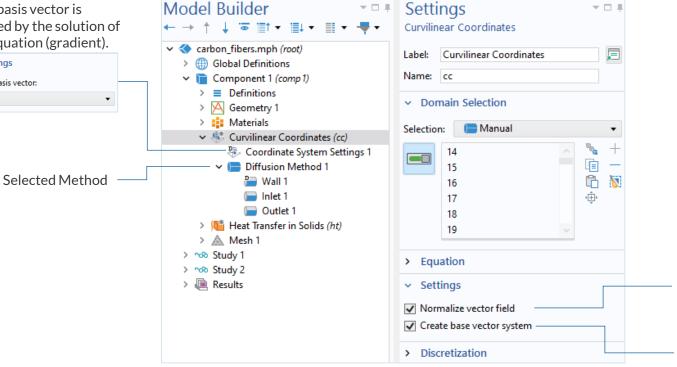
Application Areas



Woven fabric, where properties are aligned with the fiber direction.

Biological Tissue

Muscle tissue around heart has anisotropic properties aligning with fiber orientation.


Composites

Rolled steel sheet has different mechanical directions in out-ofplane direction Settings

x-axis

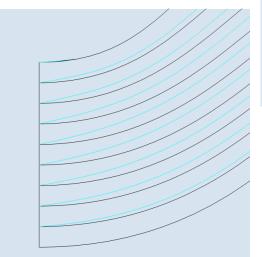
Second basis vector:

First basis vector is defined by the solution of the equation (gradient).

Normalize vector field (default) to prevent scaling effects

To define a coordinate system under **Definitions**

Inlet


- Defines starting of the vector field
- Settings differ for different methods.

Outlet

Defines end of vector field

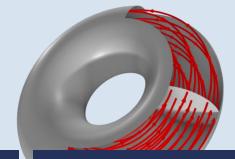
 Coordinate System Selection 	
Coordinate system:	
Global coordinate system 🔹	Ē
∽ Inlet	
Туре:	
Normal velocity	•
Velocity:	
u _n 1	m/s

Flow method allows using other coordinate systems to define direction.

Flux (blue) or constraint (black) inlet for diffusion method

Vector field enters orthogonally in the adaptive method.

Wall, Interior Wall, Jump

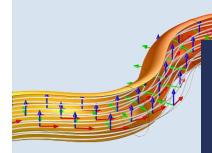

Default for diffusion, elasticity and flow method.

Normal component of vector field is zero.

Interior wall

Available for diffusion and adaptive method.

Vector field tangential to interior boundaries.

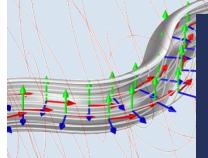

Jump

For closed-loop vector fields.

Methods

Diffusion Method

Solution of Laplace's equation (heat conduction, diffusion). Vector field points in direction of steepest gradient.


Adaptive Method

Similar to Diffusion method but uses additional terms for more constant streamline density that better follows the shape of the geometry.

Flow Method

Equivalent to solving incompressible creeping flow.

Elasticity Method

Equivalent to solving a linear elastic eigenvalue problem.

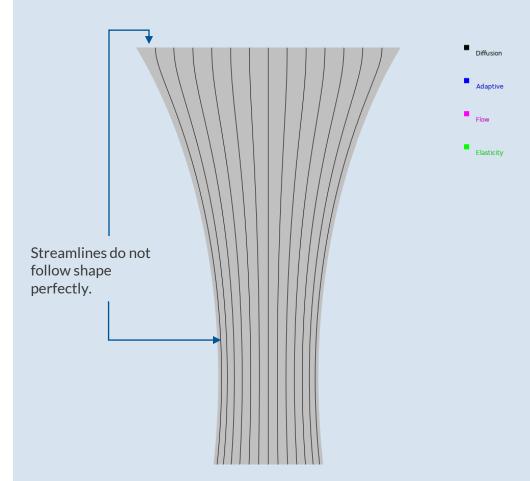
Curvature

Diffusion Method

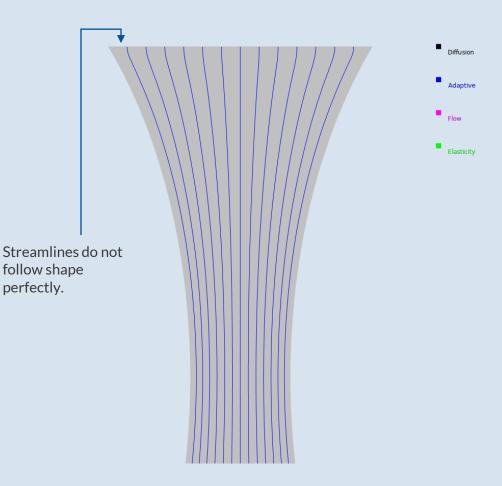
Streamlines follow the shortest path.

Adaptive Method

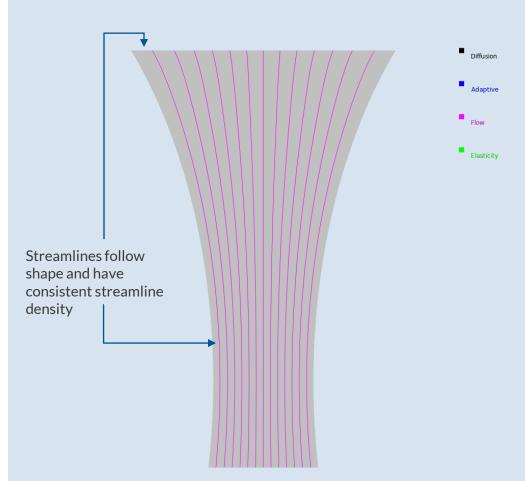
Evenly distributed streamlines.

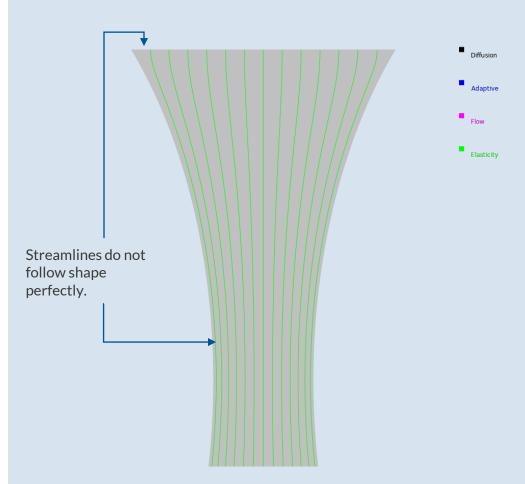

Flow Method

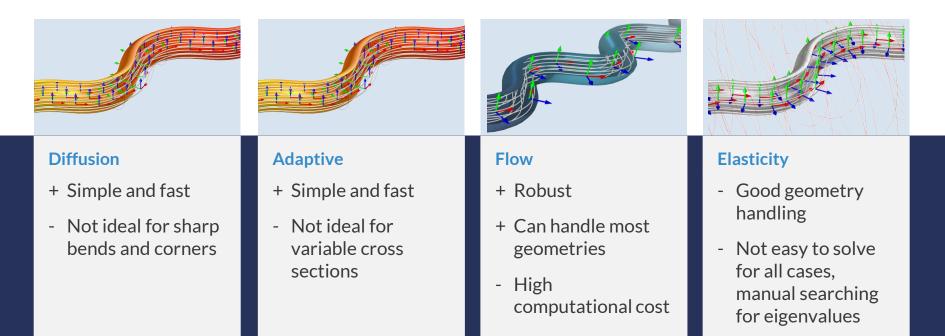
Streamlines accumulate at convex bend.


Elasticity Method

Streamlines accumulate at convex bend.


Diffusion Method


Adaptive Method


Flow Method

Elasticity Method

Summary

Further Resources for Inspiration

